صفحه 3 از 10 نخستنخست 12345678910 آخرینآخرین
نمایش نتایج: از شماره 21 تا 30 , از مجموع 97

موضوع: مقالات مهندسی مکانیک

  1. #21
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    ابداع موتورهای دیزلی ۶ زمانه
    استفاده از انواع سوخت در موتور کشتی
    ابداع موتورهای دیزلی ۶ زمانه

    یک مؤسسه تحقیقاتی لهستانی مدعی ابداع نوعی موتور دیزل احتراق داخلی است که تا ۳۰ درصد در مصرف سوخت صفه‌جوئی می‌شود. موتور مورد ادعای این مؤسسه موتور پیستون مقابل است (Opposed Piston) که از ترکیبی از موتورهای دوزمانه و چهارزمانه است که به همین دلیل شش‌زمانه خوانده می‌شود.
    مفهوم موتور با پیستون‌های مقابل این است که در هر سیلندر دو عدد پیستون در مقابل یکدیگر در حرکت هستند که هر دو براساس دوزمانه عمل می‌کنند. در این نوع موتورها دو عدد میل‌‌لنگ وجود دارد که هر دو با یک دور مساوی یکدیگر دوران می‌کنند و سیلندرها می‌توانند افقی و یا عمودی قرار گرفته باشند. در این نوع موتور سرسیلندر وجود ندارد و هر پیستون از مقابل دیگری به‌عنوان سریلندر عمل می‌کند.
    در این موتور جدید یکی از پیستون‌ها براساس دوزمانه عمل می‌نماید در حالی که پیستون مقابل در همان سیلندر براساس چهارزمانه عمل می‌نماید. به منظور هماهنگ شدن این دو پیستون با یکدیگر سرعت دوران میل‌لنگ پیستونی که براساس چهارزمانه کار می‌کند دو برابر سرعت دوران و پیستون دوزمانه است. سیلندر این دو پیستون در سمت دوزمانه دارای دوسری دریچه است (Ports)؛ یک سری که به نقطه انتهائی بالائی کورس پیستون نزدیکتر است (TDC (۱ دریجه‌های ورود هوا است و سری دیگر که در نزدیکی به نقطه انتهائی پائین کورس پیستون قرار دارند ( BDC)(۲) دریچه‌های خروج دودند. در سمت پیستون چهارزمانه هیچ دریچه‌ای وجود ندارد و هوای موردنیاز این قسمت از همان دریچه‌های سمت دوزمانه فراهم می‌شود. بنابراین در کورس برگشت پیستون به پائین ابتدا دریچه‌های هوا و سپس دریچه‌های خروج دود باز می‌شوند به طور یکه یک فرصت مناسب برای ورود هوا و خروج دود وجود دارد.
    ورود هوا و یا مخلوط هوا با سوخت به داخل سیلندر به‌وسیله یک سوپاپ دوراهی کنترل می‌شود. در این سیستم، پیستون چهارزمانه موجب بهبود مراحل تخلیه دود و ورود هوا به داخل سیلندر می‌شود.
    موتور پیستون مقابل شش زمانه که علامت شناسائی M۴+۲ برای آن تعیین شده است. دارای مزایای موتورهای دوزمانه و چهارزمانه است. ضمن اینکه نکات منفی هر دو سیستم مذکور را هم کاهش داده است. مبتکران این موتور مدعی هستند برخورداری از دو میل‌لنگ با دو دور مختلف هیچ اثر منفی در عمر مفید موتور ندارد لی در هر حال آنها پذیرفته‌اند که قدرت حاصل از احتراق سوخت در داخل سیلندر به‌طور یکنواخت به هر دو میل‌لنگ منتقل نمی‌شود بنابراین به‌منظور بهره‌گیری از این سیستم در نظر است به هر میل‌لنگ یک ژنراتور مجزا نصب شود.
    این نوع موتور از مزایای زیر برخوردار است:
    ▪ صرفه‌جوئی در سوخت به میزان ۳۰ درصد
    ▪ کاهش مقدار گازهای نیتروژن (NOx) به‌علت طولانی شدن مرحله انبساط گاز
    ▪ قدرت بیشتر نسبت به حجم کم موتور
    ▪ راندمان بهتر
    ▪ قابلیت استفاده از انواع مختلف سوخت ماند گاز مایع، سوخت‌های متداول و سوخت‌های گیاهی
    ▪ استفاده از سیستم کنترل الکترونیکی به منظور نترل نسبت فشار داخل سیلندر و کیفیت سوخت مصرفی براساس مقدار نیروئی که در نظر است برحسب مورد از موتور گرفته شود.
    ▪ سیستم تزریق سوخت با فشار بالا
    ▪ صدا و ارتعاشات کمتر
    ▪ سادگی ساختمان موتور
    تاکنون ۲ دستگاه از این نوع موتور ساخته شده است ولی در نظر است خط تولید انواع مختلف برای کاربردهای متفاوت مانند نیروی محرکه کشتی‌ها و همچنین به‌عنوان مولد برق ساخته شود.
    منبع:

    ترجمه و تدوین: مهندس توماس گراگوسیان
    منبع: The Motor Ship
    پی‌نوشت:
    ۱) Top Dead Center
    ۲) Bottom Dead Center.
    ماهنامه پیام دریا
    پایان مطلب

  2. #22
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    New

    سیستم های جدید ذخیره سازی انرژی
    چرخ طیارها نسبت به تکنولوژی های قدیمی ذخیره انرژی دارای برتری های خاصی می باشند .یکی از این برتری ها به ساختار ساده ذخیره انرژی در آنها بر می گردد. یعنی ذخیره انرژی به صورت انرژی جنبشی در یک جرم در حال دوران .
    سیستم های جدید ذخیره سازی انرژی در چرخ طیار

    در دهه اخیر، تکنولوژی های جدیدی در زمینه ی ذخیره سازی انرژی به بازار آمده اند .این تکنولوژی ها انتقال سریع انرژی را فراهم می نمایند. این پیشرفت نسبت به باطری های الکتروشیمیایی قدیمی به قدری عجیب و جالب توجه بود که می توان آن را با پیدایش الکترومغناطیس های فوق سرد و یا موتورهای استارت سریع (که با کمک انرژی پنوماتیک یا هیدرولیک ساخته شدند) مقایسه کرد .
    اخیرا صنعت شاهد پیدایش مجدد یکی از قدیمی ترین تکنولوژی های ذخیره سازی انرژی یعنی فلایویل بوده است . چرخ طیار های جدید دارای اشکال متنوعی هستند. از چرخ طیار های کامپوزیتی که برای سرعت های دورانی بسیار بالا مناسب هستند گرفته تا چرخ های فولادی قدیمی که به موتور های دورانی کوپل می گردند .
    در این مقاله، ما انواع مختلفی از چرخ طیارها که امروزه مورد استفاده قرار می گیرند را بررسی می کنیم. علاوه بر آن به برسی باطری های فعال مکانیکی نیز می پردازیم. واحدی که یکی از جالب ترین گونه های چرخ طیارهای نوین و قدیمی می باشد. این سیستم در حالیکه فضایی در حدود ۱۱ فوت مربع را اشغال می کند قادر است توانی برابر ۵۰۰ کیلو وات را منتقل نماید.
    ● معرفی:
    چرخ طیارها نسبت به تکنولوژی های قدیمی ذخیره انرژی دارای برتری های خاصی می باشند .یکی از این برتری ها به ساختار ساده ذخیره انرژی در آنها بر می گردد. یعنی ذخیره انرژی به صورت انرژی جنبشی در یک جرم در حال دوران .
    سالها از این ایده برای نرم و یکنواخت کردن حرکت موتورها استفاده می شد. در بیست سال اخیر به تدریج یک منبع جدید انرژی در اختیار طراحان و مخترعان قرار گرفت و طراحان از این منبع جدید در وسایل نقلیه الکتریکی و تجهیزات کنترل ماهواره استفاده کردند. این منبع دارای ویژگی های زیر بود:
    ایمنی بالا ، حجم کم، سازگاری با محیط زیست ، پایین بودن هزینه تعمیر و نگه داری و داشتن عمر مفید بالا و قابل پیشبینی.
    اخیرا برای کنترل و ثابت نگه داشتن سرعت وقتی که منبع اصلی انرژی به طور متناوب قطع و وصل می شود از چرخ طیار استفاده می گردد. .به دلیل نارضایتی مصرف کننده گان از باطری های الکتروشیمیایی و از طرف دیگر به علت پایین بودن هزینه تولید و عمر مفید بالای چرخ طیار اکنون در بسیاری از سیستم ها از این وسیله استفاده می شود .
    پس از پیشرفت های پی در پی در زمینه ی الکترونیک قدرت اولین بار از چرخ طیار به عنوان محافظ رادار استفاده شد و امروزه یک ابزار قدرت مند و کم هزینه ،در حجم بالا به بازار تجهیزات انتقال قدرت ارائه می شود.
    ● چرخ طیار های قدیمی:
    پیش از این، تنها کاربرد چرخ طیار ، در مجموعه موتور-ژنراتور بود. که در آن چرخ های فولادی به سیستم کوپل می شدند تا در زمان قطع و وصل شدن متناوب نیرو، دوران پایدارو طولانی تری را فراهم کنند. این امر توسط افزایش اینرسی دورانی و افزایش انرژی جنبشی ذخیره شده انجام می گرفت.
    افزایش موثر زمان دوران برای چنین سیستم هایی به ندرت از حد یک ثانیه در بار نامی فراتر می رفت. این مشکل به این علت ایجاد می شد که تنها ۵ درصد انرژی ذخیره شده از چرخ طیار به موتور انتقال می یافت. انتقال بیشتر انرژی موجب کاهش سرعت دورانی و نتیجتا کاهش فرکانس الکتریکی می شد که امری نامطلوب بود.
    با وجود اینکه این سیستم ها مانع ضعیف شدن و یا قطع طولانی مدت جریان برق می شدند، ولی تواناییِ تامین برق کافی برای یک فرایندre-closure کامل یا تامین انرژی لازم برای استارت یک ژنراتور را نداشتند.
    با اعمال چند تغییر در طرح می توان زمان انتقال قدرت را در سیستم نشان داده شده در شکل یک افزایش داد. تحت تمامی بارها ، کاهش فرکانس و ولتاژ و همچنسن کاهش سرعت دورانی ژنراتور نامطلوب می باشد.
    با اضافه کردن یک یکسو کننده بعد از ژنراتور ، سیستم این قابلیت را پیدا می کند تا ۷۵ درصد انرژی چرخ طیار را منتقل کند. پس از آن جریان DC باید ***** شده و مجددا به جریان AC با فرکانسی برابر با ۶۰ هرتز تبدیل شود. افزودن یک محرک چند سرعته به سیستم این امکان را به ما میدهد تا بتوانیم از سرعت های دورانی پایین ، اینرسی زیادی را به دست بیاوریم و در نتیجه به موتور کوچک تری برای تامین این منبع انرژی نیاز باشد.
    افزایش موثر در مدت زمان حرکت که توسط سیستم بهبود یافته چرخ طیار ایجاد می شود، حفاظت بهتری را نسبت به نوع قدیمی فراهم می آورد. اما این افزایش در مدت زمان حرکت لزوما هزینه بر هم خواهد بود. در ضمن به تجهیزات و فضای بیشتری نیز نیاز دارد.
    نمونه های قدیمی چرخ طیار نیز نسبت به تنواع مدرن خود دارای مزایایی می باشند. در این چرخ طیار ها از فولاد استفاده می شد. ماده ای که به سهولت قابل دسترسی است و به راحتی می توان شرایط مکانیکی آن را پیشبینی کرد. فولاد این امکان را برای طراحان فراهم می آورد تا علاوه بر ملاحظات مالی، شرایط ایمنی را نیز به خوبی تحت کنترل داشته باشند.
    به دلیل اینکه چرخ طیار های فولادی نسبت به انواع کامپوزیتی دارای وزن بیشتر و همچنین مقاومت بالاتری هستند، باید در سرعت های دورانی نسبتا پایینی کار کنند. این ویژگی باعث می شود که برای چرخ طیار های فولادی بتوان از یاتاقان های مدل قدیمی استفاده کرد.
    اما یکی از معایب چرخ طیار های فولادی این است که آنها نسبت به چرخ های کامپوزیتی جدید ، انرژی و قدرت پایین تری دارند. چرخ طیار های قدیمی معمولای در هوا کار می کنند. که این مسئله باعث می شود تا استهلاک بالایی داشته باشند و همچنین هنگام فعالیت صدای بیشتری تولید کنند. علاوه براین ، یک سیستم چرخ طیار خارجی نیاز به چندین مجموعه یاتاقان دارد. که این مسئله خود باعث می شود که قابلیت اعتماد کل مجموعه پایین آمده و هزینه تولید آن بالا برود.
    مزایا چرخ طیار های قدیمی:
    ▪ جنس فولادی- ایمن – قابل پیشبینی
    ▪ سرعت های دورانی پایین که باعث ساده شدن طراحی می شود.
    ▪ مواد اولیه ارزان قیمت باعث کاهش هزینه تمام شده می گردد.
    ● معایب
    ▪ انرژی و قدرت پایین
    ▪ نیاز به چندین مجموعه یاتاقان
    ▪ استهلاک آیرودینامیکی و صدای بیشت

  3. #23
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    New

    فلزات و تغيير شكلشان
    فلز ماده ای است كه میتوان آنرا صیقل داد یا براق كرد یا به شكلهای گوناگون در آورد اما فلزات با یكدیگر تفاوتهای بسیاری دارند كه در ادامه به آن می پردازیم و تغییر شكل آنها را بررسی می كنیم.

    فلزات و تغییر شکلشان
    فلز ماده‌ای است که می‌توان آن را صیقل داده و براق کرد، یا به طرح‌های گوناگون در آورد و از آن مفتول‌های سیمی ظریف تهیه کرد. فلز جسمی است که آزمایش‌های مربوط به گرما و مهم‌تر از همه جریان الکتریکی را به خوبی هدایت می‌کند. فلزات با یکدیگر فرق زیادی دارند، از جمله در رنگ و سختی و نرمی، تعدادی از آنها ممکن است به آسانی خم شده و یا خیلی محکم و مقاوم باشند

    شکل واقعی فلزات
    شکل واقعی فلزات به اندازه یون و تعداد الکترون‌هایی که هر یون در حوزه اشتراکی دارد و انرژی یون‌ها و الکترون‌ها بستگی دارد. هر قدر فلز گرمتر شود این انرژی زیادتر خواهد شد. پس فلزات گوناگون ممکن است طرح‌های گوناگونی به خود بگیرند. یک فلز ممکن است در حرارت‌های مختلف، طرح‌های متنوعی را اختیار کند، اما در بیشتر آرایش‌ها، یون‌ها کاملاً پهلوی هم قرار دارند، و معمولاً تراکم در فلزات زیادتر از دیگر مواد است. اختلافات عمده فلزات و دیگر جامدات و مایعات.فلزات هادی خوب برق هستند. چون الکترون‌های آنها برای حرکت مانعی ندارند. همه فلزات جامد و مایع گروهی الکترون آزاد دارند، طبعا همه فلزات هادی‌های خوب الکتریسیته هستند. به این سبب فلزات از دیگر گروه‌های عناصر، کاملاً متفاوت دارد.
    اختلاف عمده فلزات و دیگر جامدات و مایعات، در توانایی هدایت گرما و الکتریسیته است. هادی خوب آزمایش‌های مربوط به گرما جسمی است که ذرات آن طوری تنظیم شوند که بتوانند آزادانه نوسان یافته و به ذرات مجاور خود نیز امکان نوسان آزاد را بدهند. "گرم شدن" همان نوسانات سریع یون‌ها و الکترون‌ها است. در فلزات چون گروه الکترون‌ها، غبار مانند یون‌ها را احاطه می‌کنند، طبعا هادی‌های خوبی برای حرارت هستند «رسانش گرمایی فلزات).

    مقاومت مکانیکی فلز
    مقصود آن مقدار باری است که فلز می‌تواند تحمل کرده، نشکند. بسیاری از فلزات، وقتی گرم هستند، اگر تحت فشار قرار گیرند، شکل خود را زیادتر از موقعی که سرد هستند، تغییر می‌دهند. بسیاری از فلزات در زیر فشار متغییر مانند نوسانات، آسانتر از موقعی که سنگین باری را تحمل می‌کنند، می‌شکنند.

    علت درخشش فلزات
    دلیل اول آن است که با طرح ریزی و براق کردن صحیح می‌توان فلزات را به شکل خیلی صاف تهیه کرد. گر چه آنها نیز تصاویر را خوب منعکس می‌کنند، ولی ظاهر سفید و درخشان بیشتر قطعات فلزی صیقلی شده را ندارند. بطور کلی جلا و درخشندگی فلز بستگی دارد به گروه الکترون‌های آن دارد.الکترون‌ها می‌توانند هر نوع انرژی را که به روی فلزات می‌افتد جذب کنند؛ زیرا در حرکت آزاد هستند. بیشتر انرژی الکترون‌ها از تابش نوری است که به آنها می‌افتد، خواه نور آفتاب باشد یا نور برق. اکثر فلزات همه انرژی جذب شده را پس می‌دهند، به همین دلیل، نه تنها درخشان بلکه سفید به نظر می‌آیند.

    علت تغییر شکل فلزات
    بسیاری از فلزات در حرارت ویژه‌ای، آرایش یون‌های خود را تغییر می‌دهند. با تغییر ترتیب آرایش یون‌های بسیاری از خصوصیات دیگر فلز نیز دگرگون می‌شود و ممکن است فلز کم و بیش شکننده، قردار، بادوام و قابل انحنا شود یا اینکه انجام کار با آن آسان گردد. بسیاری از فلزات در هنگام سرد بودن، به سختی تغییر شکل می‌پذیرند. بیشتر فلزات جامد را به زحمت می‌توان در اثر کوبیدن به صورت ورقه و مفتو‌ل‌های سیم در آورده، ولی اگر فلز گرم شود، انجام هر دو آسان است.

    جستارهای وابسته

    * آلیاژ
    * اجسام رسانا
    * الکترون
    * انبساط جامدات
    * انتقال گرما
    * جامد
    * تنگستن
    * رسانش الکتریکی فلزات
    * فلزات مایع
    * مقاومت مکانیکی

    بسیاری از قطعات آلومینیمی به همان روش و با استفاده از همان دستگاه هایی شکل داده می شوند که برای شکل دادن فلزاتی چون فولاد ، مس و غیره به کار می رود اما در شکل دادن آلومینیم و آلیاژهیا آن برای دستیابی به شکل مورد نظر باید چندین مطلب مهم را در نظر گرفت از میان خواص مشخص آلومینیم می توان خواص زیر را نامب رد آلومینم سطحی نرمتر از فولاد دارد آلومینیم در مقابل شیار ( شکاف ) حساس است آولومینم اگر تحت خمش قرار بگیرد تمایل قابل توجه ای در بر گشتنب ه حالت اولیه خود دارد ( فنریت بالا)آلومینیم ضریب انتساط حرارتی و قابلیت حدایت حرارتی زیادی دارد سطح آلومینم به آسانی آسیب می بیند بنابراین تولیدات نیمه تمام و قطعات تمام شده آلومینیم باید در موقع جابه جایی کل شود و از اکسیژن یا شراندن آن بر روی میز کار و کف زمین پرهیز کرد از آلودگی سطح فلزی آلومینیم با ذرات فلزات سنگین باید پرهیز شود زیرا در صورت وجود رطوبت به خودگی آلومینیم کمک می کند.

    آلومینم دارای فنریت زیادی است وقتی آلومینیم خم یا تا شود قابلیت انعطاف ( فنریت ) خیره کننده در مقایسه با قابیت انعطاف ( فنریت ) فولاد معمولی از خود نشان می دهد هر چه آلیاژ سخت تر باشد فنریت آن بیشتر است برگشت پذیری را می توان با خم کردن بیش از اندازه جبران کرد ولی مقدار صحیح و مطلوب آن برای کار مورد نظر را باید از طریق آزمایش و خظا تعیین کرد فنریت زیاد آلومینم در مقایسه با فولاد هب علت مدول الاستیکی نسبتا پایین آن است بیش از حد گرم کردن ماده آلومینیمی در دماهای غیر مجاز حتی به مدت بسیار کوتاه آسیب جبران ناپذیریبه فلز می رساند آن قدر که بریا برازندگی آن با کار باید آن را دوباره ذوب کرد بنابر این در کلیه عملیات کار گرم باید دقت دما را کنترل کرد.اغلب عملیات شکل دادن آلومینیم در حالت سرد انجام می گیرد زیرا وقتی پوفیلی با رویه نازک و روق های نازک حرادت داده می شوند امکان تاب خوردن آنها وجود دارد نیروی لازم برای تغییر شکل آلومینیم کمتر از فولاد است نرمی آلومینیم به خود ماده ( نوع آلیاژ ) و حالت آن بستگی دارد وضعیت آلومینیم مانند هر فلز دیگری در اثر کار سرد تغییر می کند تاثیر کار سرد بر آلومینم از این قرار است ماده مستحکم تر و سخت تر می شود در قطعه تنش تولید می شود اگر تغییر شکل از ظرفیت تغییر شکل پذیری فلز بیشتر شود کار سرد مممکن است باعث ترک خوردن آن شود راحت ترین ماده آلومینیمی از نظر تغییر شکل و نرمی آلویمینم حالص آلومینیم تصفیه شده و آلیاژ Al-Mn در حالت نرم است.

    آلومینیم خالص و آلیاژهای آلومینیم در حالت نیمه سخت و آلیاژهای پیر سختی پذیر در حالت نرم در حال کار پذیر هستند گر چه کارپذیری آن ها کمتر از موادبیشتر شاد شده است آلیاژ های آلومینیم در حالت سخت یا حالات کاملا پیر سهت شده به مقدار کمی کار پذیرند و به طور کلی کارپذیری آنها بسیار مشکل است.آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود.

    آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند. آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند .

    آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند استکام بالای آلیاژهای Al-Li ناشی از قابلیت آن ها برای پیر سختی است مهمترین زمینه های کاربرد آلومینم در صنایع عبارتند از :1- مصارف خانگی نظیر ظروف 2- مصارف ساختمانی نظیر در و پنجره 3- مصارف تاسیساتی نظیر لوله و اتصالات 4- مصارف صنایع فضایی5- مصارف اتومبیل سازی 6- مصارف کشتی سازی بدنه پروانه پمپ 7- مصارف تجاری و بسته بندی چای مواد لبنی ضخامت تا 10 میکرون 8- مصارف الکتریکی : نظیر کابل ها .
    بسیاری از قطعات آلومینیمی به همان روشو با استفاده از همان دستگاه هایی شکل داده می شوند که برای شکل دادن فلزاتی چون فولاد ، مس و غیره به کار می رود اما در شکل دادن آلومینیم و آلیاژهیا آن برای دستیابی به شکل مورد نظر باید چندین مطلب مهم را در نظر گرفت از میان خواص مشخص آلومینیم می توان خواص زیر را نامب رد آلومینم سطحی نرمتر از فولاد دارد آلومینیم در مقابل شیار ( شکاف ) حساس است.
    آلومینیوم اگر تحت خمش قرار بگیرد تمایل قابل توجه ای در بر گشتنب ه حالت اولیه خود دارد ( فنریت بالا)آلومینیم ضریب انتساط حرارتی و قابلیت حدایت حرارتی زیادی دارد سطح آلومینم به آسانی آسیب می بیند بنابراین تولیدات نیمه تمام و قطعات تمام شده آلومینیم باید در موقع جابه جایی کل شود و از اکسیژن یا شراندن آن بر روی میز کار و کف زمین پرهیز کرد از آلودگی سطح فلزی آلومینیم با ذرات فلزات سنگین باید پرهیز شود زیرا در صورت وجود رطوبت به خودگی آلومینیم کمک می کند آلومینم دارای فنریت زیادی است.

    وقتی آلومینیم خم یا تا شود قابلیت انعطاف ( فنریت ) خیره کننده در مقایسه با قابیت انعطاف ( فنریت ) فولاد معمولی از خود نشان می دهد هر چه آلیاژ سخت تر باشد فنریت آن بیشتر است برگشت پذیری را می توان با خم کردن بیش از اندازه جبران کرد ولی مقدار صحیح و مطلوب آن برای کار مورد نظر را باید از طریق آزمایش و خظا تعیین کرد فنریت زیاد آلومینم در مقایسه با فولاد هب علت مدول الاستیکی نسبتا پایین آن است بیش از حد گرم کردن ماده آلومینیمی در دماهای غیر مجاز حتی به مدت بسیار کوتاه آسیب جبران ناپذیریبه فلز می رساند آن قدر که بریا برازندگی آن با کار باید آن را دوباره ذوب کرد بنابر این در کلیه عملیات کار گرم باید دقت دما را کنترل کرد .

    انواع تغییر شکل:

    بررسی مکانیزمهای ایجاد ترک و مکانیزمهای متفاوت رشد سریع یا در حد بحرانی ترک و رشد آرام و پایینتر از رشد بحرانی از اهمیت ویژه صنعتی برخوردارند. بررسی فعل و انفعالات فیزیکی که به هنگام شکست روی میدهد چندان ساده نیست، زیرا چگونگی ایجاد ترک و رشد آن و بالاخره نوع شکست در مواد کریستالی به جنس، ساختار شبکه کریستالی، ریزساختار و از آنجا که قطعات معمولا به طور کامل سالم و بدون عیب نیستند به نوع، اندازه و موقعیت عیب، نوع و حالت تنش وارد بر آنها بستگی خواهد داشت. معمولا شکست درفلزات به شکست نرم و شکست ترد تقسیم می شود.در صنعت هدف، کنترل و به تعویق انداختن شکست است.

    شکست نرم:
    بسیاری از فلزات و آلیاژهای آنها، به ویژه آنهایی که دارای شبکه fcc هستند، مانند آلومینیوم و آلیاژهای آن، در تمام درجه حرارتها، شکست نرم خواهند داشت. شکست نرم به آرامی و پس از تغییر شکل پلاستیکی زیاد به ازای تنشی بالاتر از استحکام کششی ظاهر میشود. از مشخصات شکست نرم، تحت تاثیر تنش کششی، ظاهر گشتن گلویی یا نازکی موضعی و ایجاد حفره های بسیار ریز در درون قسمت گلویی و اتصال آنها به یکدیگر تا رسیدن به حد یک ترک ریز و رشد آرام ترک تا حد پارگی یا شکست نهایی است

    مراحل مختلف شكست نرم در یك فلز انعطاف پذیر

    در این نوع شکست علت ایجاد حفرهای ریز در محدوده گلویی میتواند تغییر شکل غیر یکنواخت ناشی از ناخالصیهای موجود در ماده اصلی زمینه باشد. لذا با ایجاد حفره های بسیار ریز در محدوده گلویی حالت تنش سه محوری برقرار میشود که منجر به ایجاد ترک میشود .
    در طراحی و ساخت اجزای ماشین آلات و در ساختمان سازی، تنشهای وارد بر سازه های فلزی در محدوده الاستیکی انتخاب میشود. بنابراین در کاربرد صنعتی، شکست در حالت تنش استاتیکی در مواد انعطاف پذیر ( داکتیل ) یک پیشامد نامطلوب است.

  4. #24
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    New

    ترك داخلی در نا حیه نازك شده در نمونه كششی مس با خلوص بالا

    شکست ترد:
    شکست ترد معمولا در فلزاتی با ساختار کریستالی مکعب مرکزدار(bcc ) و هگزاگونال متراکم (hcp) و آلیاژهای آنها در درجه حرارتهای پایین ( معمولا پایینتر از دمای معمولی محیط ) و سرعتهای تغییر شکل بالا بطور ناگهانی ظاهر میشود. شکست ترد در امتداد صفحه کریستالی معینی، به نام صفحه کلیواژ، انجام میگیرد. در شکست ترد عموما تغییر شکل پلاستیکی قابل توجهی در منطقه شکست مشاهده نمیشود.نظریه شکست ابتدا علت شکست را این چنین بیان کرد که تمام پیوندهای اتمی در امتداد صفحه شکست هم زمان با هم گسیخته میشوند. بدین ترتیب که با ازدیاد تنش فاصله اتمها از یکدیگر دور میشوند ودر نهایت به محض اینکه تنش به حد تنش شکست ( تنش بحرانی ) رسید، در نتیجه گسستن تمامی پیوندهای اتمی در صفحه عمود بر امتداد کشش، شکست پدیدار میشود.در جدول زیر تنشهای بحرانی عمود بر صفحات کریستالی معین در چند تک کریستال برای شکست داده شده است.

    شكست ترد وتعدادی از تك كریستالها

    عملا تنش لازم برای شکست مواد لازم فلزی به اندازه قابل توجهی کمتراز تنش شکست محا سبه شده ا ز طریق تئوری است . بنابراین فعل وانفعال شکست نمیتواند از طریق گسستن همزمان تمامی پیوند های اتمی درامتداد سطح شکست صورت گیرد. بد ین ترتیب فعل و انفعالات شکست عملا بیشتر از طریق ایجاد یک ترک بسیار ریز به عنوان منشا ترک و رشد و پیشروی آن انجام میگیرد . برای پیشروی ترک د ر یک ماده لازم است مقدار تنش متمرکز در نوک ترک از استحکام کششی در آن موضع فراتر رود . د ر مواردی که شرایط برای پیشروی منشا ترک مساعد نیست ترک می تواند متوقف گشته وشکست پدیدار نشود.


    تئوری گریفیت:
    او چنین بیان می کند که در ماده ای که حاوی تعدادی ترک بسیار ریز باطول معینی است ، همین که مقدار تنش متمرکز درنوک ترک ، حداقل به مقدار تنش لازم برای گسستن پیوندهای اتمی د رآن موضع ( استحکام کششی ) رسید، شکست ظاهر میشود . باپیشرفت ترک ، سطح ترک افزایش می یابد . این مطلب بدین معنی است که برای ایجاد این سطح باید انرژی به کار برده شود . این مقدار انرژی از انرژی تغییر شکل کسب می شود.
    بنابراین فرضیه گریفیت علت پدیدار گشتن شکست ترد را وجود ترکها و خراشهای سطحی بسیار ریز ( با اندازه بحرانی) و پائین بودن استحکام را د رآن مواضع می داند . اماموادب هم وجود دارد که بد ون داشتن ترکهای سطحی بسیار ریز شکست ترد د ر آنها پدیدار می شود . بنابراین د ر این گونه مواد هم باید فعل وانفعالاتی صورت گیرد که موجب به وجود آمدن تمرکز تنش وفراتر رفتن موضعی مقدارتنش از استحکام کششی ود رنتیجه ایجاد منشا ترک شود. زنر و اشترو مکانیزم این فعل و انفعال راچنین بیان داشتند که در حین تغییر شکل پلا ستیکی نابجاییها در پشت موانع ( مانند مرزدانه ها ومرز مشترک د و قلوییها ) تجمع یافته وبدین ترتیب در زیر نیم صفحه های مربوط به این نابجاییها ترکهای بسیار ریزی ایجاد می شود .
    این ترکهای بسیار ریزهمچنین می تواند محلهای مناسبی برای نفوذ عناصری مانند اکسیژن ، ازت وکربن درآنها وایجاد فازهای ثانوی ترد ودر نتیجه شکست ترد باشند. چنین رفتار ترد د ر شکست ترد مس باوجود عناصری مانند آنتیموان وآهن همراه بااکسیژن مشاهده شده است .

    مكانیزم ایجاد ترك از طریق نابجاییها

    الف) تجمع نابجائیها در پشت مرز دانه ها (Zener)
    ب) تلاقی نابجائیها (Cottrell)

    کاترل مکانیزم د ومی رابرای ایجاد منشا ترک ارائه کرد. بد ین صورت که منشا ترکهای ریز می تواند د ر اثر تلا قی د و صفحه لغزش بایکد یگر ، د ر نتیجه د ر هم آمیختن نابجاییها د ر محل تلا قی آن د و صفحه و ایجاد نابجاییها ی جد ید ، ناشی شود، این مکانیز م می تواند د لیلی برای ایجاد سطح شکست ( صفحه کلیواژ ) مشاهده شده د ر صفحه (001 ) د ر فلزات باساختار کریستالی مکعب مرکزدار (bcc ) باشد.
    درفلزات چندین کریستالی شکست تر د میتواند به صورت برون دانه ای ( بین دانه ای) و یا درون دانه ای باشد.شکست برون دانه ای در بین دانه ها د ر امتداد مرز دانه ها ظاهر می شود. د لیل این نوع شکست بیشتر میتواند وجود ناخالصیها یا جدایش و رسوب عناصر یا فازهای ترد و شکننده د ر امتداد مرز دانه ها باشد. شکست ترد درفلزات بیشتر به صورت درون دانه ای است . بدین ترتیب که ترک د ر داخل دانه ها گسترش می یابد. د رجه حرارت و سرعت تغییر شکل تاثیر مخالفی برروی نوع شکست خواهد داشت ، به طوری که باکاهش درجه حرارت و ازد یاد سرعت تغییر شکل ، تمایل برای شکست ترد به صورت درون دانه ای د ر حین خزش د ر نتیجه تغییرات شیمیائی دراثر اکسیداسیون ممکن خواهد بود. چنانچه اکسیداسیون برون دانه ای در فلزات صورت گیرد، تنش شکست بسیار کاهش می یابد.

    تافنس شکست:
    چنانچه در جسمی ترک وجود داشته باشد، د راین صورت استحکام آن جسم استحکامی نیست که از طریق آزمایش کشش به دست می آید ، بلکه آن کمتر است. د راین صورت مسئله ترک واشاعه آن اهمیت پیدا می کند. در اینجا تافنس شکست به رفتار مکانیکی اجسام ، شامل ترک یاد یگر عیوب بسیار ریز سطحی یاداخلی مربوط میشود. البته م یتوان اذعان کرد که عموما تمام اجسام عاری از عیب نبوده و شامل عیوبی هستند . دراین صورت آن چه که د رطراحی و اتنخاب مواد برای ما اهمیت صنعتی ویژه ای دارد ، مشخص کردن حد اکثر تش قابل تحمل برای جسمی است که شامل عیبی با شکل و اندازه معینی است . بنابراین به کمک تافنس شکست می توان توانایی جسمی که بطور کامل سالم نیست راد رمقابل یک بار خارجی وارد برجسم سنجید.معمولابرای تعیین تافنس شکست از آزمایش کشش برروی نمونه آماده شده ای از جنس معین که ترکی بطول وشکل معینی برطبق استاندارد درسطح یاداخل نمونه بطورعمد ایجاد شده استفاده می شود، شکل نمونه به گونه ای د ر دستگاه آزمایش کشش قرار می گیرد که ترک ریز به صورت عمود برامتداد تنش کششی قرار گیرد.

    اکنون این سئوال مطرح می شود که به ازای چه مقداری از تنش s جوانه ترک مصنوعی د ر داخل جسم گسترش می یابد تاحدی که منجر به شکست نمونه شود . در اطراف این ترک تنش به صورت پیچیده ای توزیع می شود. حداکثر تنش کششی ایجاد شده د ر راس ترک بزرگتر از خارجیs است و تنش بحرانی ( sc ) نامیده میشود.تا زمانی که sc کوچکتراز استحکام کششی است نمونه نمی شکند .با وارد آمدن تنش به نمونه د ر محدوده الاستیکی ابتدا انرژی پتانسیل در نمونه ذ خیره می شود . موقعی که ترک شروع به رشد می کند بین مقدارکاهش انرژی پتانسیل ذخیره شده د رنمونه وانرژی سطحی ناشی از رشد ترک تعادل برقرار است . تازمانی رشد ترک ادامه پیدا می کند که از انرژی الاستیکی کاسته و به انرژی سطحی افزوده شود، یعنی تالحظه ای که شکست ظاهر گرد د .ابتدا گریفیث با توجه به روابط مربوط به انرژی پتانسیل ذ خیره شده و انرژی سطحی ترک در ماده الاستیکی ،مانند شیشه و تغییر و تبد یل آنها به یک د یگررابطه زیر را ارائه کرد:
    s=√2Egs ∕ pa

    این رابطه برای حالت تنش د و بعدی برقرار است . gs د ر این رابطه انرژی سطحی ویژه و E مد ول الاستیکی ماده است .برای حالت تغییر شکل د و بعدی ( حالت تنش سه بعدی باصرفنظر از تغییر شکل د ربعد سوم ) رابطه زیر را ارائه کرد:

    (s = √ 2Egs ∕ pa(1_ n²


    لازم به تذکر است که رابطه گریفیث برای یک ماده الاستیکی شامل ترک بسیار ریز باراس ترک تیز ارائه شد و این رابطه ترک باشعاع راس ترک 0≠r را شامل نمی شو د . بنابراین رابطه گریفیث شرط لازم برای تخریب است ، اما شرط کافی نیست .
    در رابطه گریفیث انرژی تغییر شکل پلاستیکی در نظر گرفته نشده است . ازاین ر و اروان انرژی تغییر شکل پلاستیکی ، که برای فلزات و پلیمرها در فرآیند شکست قابل توجه است رادر نظر گرفت و رابطه زیر راارائه کرد:

    s = √ 2E(gs+gp) ∕ pa

    سپس اروین رابطه گریفیث را برای موادی که قابلیت تغییر شکل پلاستیکی دارند ، به کار برد و باتوجه به میزان رها شدن انرژی تغییر شکل الاستیکی در واحد طول ترک د رحین رشد (G) رابطه زیر را برای حالت تنش د و بعدی ارائه داد :

    s = √ EG ∕ pa

    بامقایسه با رابطه قبل (gs+gp) 2 = s است . بد ین ترتیب د ر لحظه ناپایداری ، وقتی میزان رها شد ن انزژی تغییر شکل الاستیکی به یک مقدار بحرانی رسید ، شکست پدیدار می شود. در این صورت در لحظه شکست :
    برای حالت تنش دو بعدی Gc=pasc²∕E
    برای حالت کرنش دو بعدیGc= pa(1- n² ) sc² ∕ E = Kc² ∕ E

    Gcمقیاسی برای تافنس شکست یک ماده بوده و مقدار آن برای هر ماده ای ثابت و معین است . بامعلوم بودن این کمیت می توان مشخص کرد که مقدارa به چه اندازه ای باید برسد تاجسم بشکند . بدین ترتیب این رابطه در مکانیزم شکست اهمیت دارد. هرچقدر Gcکوچکتر باشد ، تافنس کمتر یا به عبارتی ماده تردتراست .رابطه زیر را برای حالت تنش دو بعدی می توان به صورت زیر نوشت :

    Gc = √ EGc ∕ pa

    و برای شرایط تغییر شکل نسبی د و بعدی رابطه زیر ارائه شده است :

    (s = √ EGc ∕ pa(1_n²

    تعیین تنش شکست بحرانی sc کار چندان ساده ای نیست . اما می توان گفت که به ازای تنشهای جسم باوجود ترک هنوز نمی شکند . از این رو تنش درحد پاینتر از مقدار بحرانی با ضریب شدت تنش K توصیف و رابطه زیر برای آن ارائه شد ه است :

    K= fs√ pa

    در این رابطه f ضریب هند سه نمونه معیوب ، s تنش اعمالی وa اندازه عیب است ، در شکل تئوری گریفیث اگر عرض نمونه نامحدود فرض شود ، دراین صورت 1 = f است . با انجام آزمایش روی نمونه ای با اندازه معینی از عیب می توان مقدار k ، که به ازای آن ترک شروع به رشد کرده و موجب شکست میشود ، را تعیین کرد . این ضریب شدت تنش بحرانی به عنوان تافنس شکست نامیده میشود و به Kc نشان داده میشود .اماازطرفی ، همچنین به ازای تنش ثابتی درحد کوچکتر از استحکام کششی باافزایش کند ترک ، طول ترک (a) میتواند به مقدار بحرانی برسد و به ازای آن نمونه تخریب شود.

    تافنس شكست (Kc) از فولادی با تنش تسلیم MN.m2 2070 با افزایش ضخامت تا تافنس شكست در حالت تغییر شكل صفحه ای (دو بعدی) كاهش می یابد.

    کمیتهای Kcو Gc بستگی به ضخامت نمونه دارد. همین که ضخامت نمونه افزایش یافت ، تافنس شکست Kcتا مقدار ثابتی کاهش می یابد ، این مقدار ثابت Kc تافنس شکست تغییر شکل نسبی دو بعدی KIc نامیده می شود . Kc کمیتی مستقل از اندازه نمونه است و در محاسبه استحکام که مستلزم اطمینان بالاست ، به کار میرود .

    بنابراین در طراحی در محاسبات باید روابط زیر توجه شود :
    s< Kc ∕ √ pa

    و در حالت تغییر شکل دو بعدی ( حالت تنش سه بعدی باناچیز بودن تغییر شکل در بعد سوم):
    s< K1c ∕ √ pa

    کمیتهای K1c و G1c نه فقط برای گسترش ترک ترد ونرم تعریف شد ه است ، بلکه همچنین برای شکست تحت شرایط تنش خوردگی ، خستگی و خزش نیز به کار میرود. در جداول زیر تافنس شکست تعدادی از مواد ارائه شده است .

    تافنس شكست تعدادی از مواد طراحی

    تافنس شكست در حالت تغییر طول نسبی دومحوری (KIc) تعدادی از مواد

    اگر حد اکثر اندازه عیب موجود در قطعه a و مقدار تنش وارد برآن s باشد ، میتوان ماده ای را باتافنس شکست Kc یا K1c به اندازه کافی بالا ، که بتواند از رشد ترک جلوگیری کند، انتخاب کرد. همچنین اگر حداکثر اندازه مجاز عیب موجود درقطعه و تافنس شکست ماده ، یعنی Kc یا K1c، معلوم باشد در آن صورت میتوان حداکثر تنش قابل تحمل برای قطعه رامشخص کرد. از این رو میتوان اندازه تقریبی قطعه را تیین کرد، آن چنان که از پایینتر آمدن حداکثر تنش ایجاد شده از حد مجاز، اطمینان حاصل شود.
    همچنین اگر ماده معینی انتخاب و اندازه قطعه و تنش وارد برآن مشخص شده باشد ، حد اکثر اندازه مجاز عیب قابل تحمل را میتوان به طور تقریب بدست آورد.
    توانایی هرماده در مقابل رشد ترک به عوامل زیر بستگی دارد:
    1- عیوب بزرگ ، تنش مجاز را کاهش میدهد. فنون خاص تولید، مانند جداسازی و کاهش ناخالصیهااز فلز مذاب و فشردن ذرات پودر در حالت داغ در تولید اجزای سرامیکی همگی میتواند موجب کاهش اندازه عیب شود و تافنس شکست را بهبود ببخشد.
    2- در فلزات انعطاف پذیر ، ماده مجاور راس ترک میتواند تغییر فرم یابد . به طوری که سبب باز شدن راحت راس ترک و کاسته شدن از حساسیت آن شده و ضزیب شدت تنش را کاهش داده و از رشد ترک جلوگیری میکند معمولا افزایش استحکام فلز انعطاف پذیری را کاهش میدهد و سبب کاهش تافنس شکست میشود ، مانند سرامیکهاوتعداد زیادی از پلیمرها ، تافنس شکست بسیار پایینتر از فلزات دارند.
    3- مواد ضخیمتر وصلبتر دارای تافنس شکست کمتر از مواد نازک هستند.4- افزایش سرعت وارد کردن بار، مانند سرعت وارد شدن بار د ر آزمایش ضربه ، نوعاتافنس شکست جسم را کاهش میدهد.5- افزایش درجه حرارت معمولا تافنس شکست راافزایش میدهد، همان گونه که د ر آزمایش ضربه این چنین است .6- با کوچک شدن اندازه دانه ها معمولا تافنس شکست بهبود مییابد ، د ر حالی که با وجود عیوب نقطه ای و نابجاییهای بیشتر تافنس شکست کاهش مییابد. بنابراین مواد سرامیکی دانه ریز میتواند مقاومت به رشد ترک را بهبود بخشند.

  5. #25
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    بررسي جوشكاري GMAW آلومينيوم
    بررسي جوشكاري GMAW آلومينيوم بر روي ورقه آلومينيوم در مقايسه با نمونه فولاد ساده كربنيدراين پروژه به جوشكاري آلومينيم و فولاد توسط روش GMAW توسط فلز پركننده آلومينيم پرداخته شده است. مطالعه فيزيك جوش، ظاهر گرده جوش و خاصيت خيس شوندگي قطعه جوشكاري شده و مقايسه نمونه هاي فولادي و آلومينيومي جوشكاري شده بخش اصلي آزمايش مي باشد. تعدادي نمونه از جنس آلومينيم و فولاد با قطرهاي 1 الي 2 ميلي متر و با ابعاد 10ـ 85/2ـ 2 سانتي متر بريده و تهيه شد. نمونه ها قبل از عمليات جوشكاري با اسيدكلريدريك شستشوو آماده سازي سطحي شد. سپس با درنظر گرفتن پارامترهاي ورودي همچون شدت جريان، ولتاژ، سرعت تغذيه سيم الكترود و عامل پيش گرم نمونه تحت جوشكاري GMAW قرار گرفتند. پس از اتمام عمليات جوشكاري، جدول هايي تهيه شد كه نتايج حاصل از هرآزمايش را جهت سهولت در مطالعه و مقايسه در اختيار خواننده قرار دهد. همچنين از تمام نمونه ها عكسبرداري شد تا امكان مقايسه بصري فراهم آيد. نمونه آلومينيمي با قطر 2 ميلي متر بهترين نتايج راجع به ظاهر جوش و خيس شوندگي را به خود اختصاص داد. همچنين اثر دماي پيش گرم قبل از جوشكاري در نمونه هاي آلومينيومي با ضخامت كم كاملاً مشهود است. نمونه هاي آلومينيومي به علت ضخامت كم و خواص ويژه مهندسي و فيزيكي مي بايست تحت شرايط كنترل شده اي مورد جوشكاري قرار گيرند. از جمله پارامترهايي كه به جوشكاري نمونه آلومينيمي در اين آزمايش حساس بود پارمتر «سرعت تغذيه الكترود سيم» بود كه نمي توانست از حد 68/0 متر بر دقيقه ***** كند. نمونه هاي فولادي با دارا بودن خاصيت انعطاف پذيري در مقابل پارامترهاي جوشكاري فاقد كيفيت ظاهري جوش مناسبي بودند.

    بررسي جوشكاري GMAW آلومينيوم بر روي ورقه آلومينيوم

    در مقايسه با نمونه فولاد ساده كربني

    زهير سراجان[1] ـ مهدي مباركي ـ فرشاد فيروزفر

    دانشگاه آزاد اسلامي واحد يزد

    Zohair Sarajan

    Mehdi Mobaraki

    Farshad Firouzfar

    دراين پروژه به جوشكاري آلومينيم و فولاد توسط روش GMAW توسط فلز پركننده آلومينيم پرداخته شده است. مطالعه فيزيك جوش، ظاهر گرده جوش و خاصيت خيس شوندگي قطعه جوشكاري شده و مقايسه نمونه هاي فولادي و آلومينيومي جوشكاري شده بخش اصلي آزمايش مي باشد. تعدادي نمونه از جنس آلومينيم و فولاد با قطرهاي 1 الي 2 ميلي متر و با ابعاد 10ـ 8´5/2ـ 2 سانتي متر بريده و تهيه شد. نمونه ها قبل از عمليات جوشكاري با اسيدكلريدريك شستشوو آماده سازي سطحي شد. سپس با درنظر گرفتن پارامترهاي ورودي همچون شدت جريان، ولتاژ، سرعت تغذيه سيم الكترود و عامل پيش گرم نمونه تحت جوشكاري GMAW قرار گرفتند. پس از اتمام عمليات جوشكاري، جدول هايي تهيه شد كه نتايج حاصل از هرآزمايش را جهت سهولت در مطالعه و مقايسه در اختيار خواننده قرار دهد. همچنين از تمام نمونه ها عكسبرداري شد تا امكان مقايسه بصري فراهم آيد. نمونه آلومينيمي با قطر 2 ميلي متر بهترين نتايج راجع به ظاهر جوش و خيس شوندگي را به خود اختصاص داد. همچنين اثر دماي پيش گرم قبل از جوشكاري در نمونه هاي آلومينيومي با ضخامت كم كاملاً مشهود است. نمونه هاي آلومينيومي به علت ضخامت كم و خواص ويژه مهندسي و فيزيكي مي بايست تحت شرايط كنترل شده اي مورد جوشكاري قرار گيرند. از جمله پارامترهايي كه به جوشكاري نمونه آلومينيمي در اين آزمايش حساس بود پارمتر «سرعت تغذيه الكترود سيم» بود كه نمي توانست از حد 68/0 متر بر دقيقه ***** كند. نمونه هاي فولادي با دارا بودن خاصيت انعطاف پذيري در مقابل پارامترهاي جوشكاري فاقد كيفيت ظاهري جوش مناسبي بودند.

  6. #26
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    تاثیر میکروساختار سلولی بر رفتلر
    تاثیر میکروساختار سلولی بر رفتلر مکانیکی فوم های آلومینیمی در این مطالعه مقاومت کششی و فشاری سه فوم آلومينيمي توليد شده با روشهاي مختلف و آلياژهاي مختلف مقايسه شده ونتايج آن ذكر مي شود و در مورد تاثير ميكرو ساختار ديواره سلولي روي رفتار مكانيكي فوم‌هاي فلزي بحث مي‌شود. دو ساختار تخلخلي بسته با دانسيته نسبي و ساختار سلولي يكسان اما ميكروساختار ديواره متفاوت مورد مطالعه قرار مي‌گيرد و اين تفاوت اساسا بر روي ميكرومكانيزم تغيير شكل و شكست تحت بارهاي معين و همچنين بر روي پاسخ مكانيكي ماكروسكوپي تاثير مي‌گذارد، تافنس و داكتيل بودن ديواره سلول به علت شكست حجمي يوتكتوئيد دانه درشت، فيلمهاي اكسيدي ريز و ذرات شكننده كاهش مي‌يابد. فوم های تولید شده به روش متالوﮊی پودر دارای اکسید بالایی بوده و مقدار تخلخل کمتر می باشد که به این دلیل در این فومها شکست ترد مشاهده میشود در حالیکه شکست در فومهای تولید شده به روش Alporas نرم می باشد.
    پایان مطلب

  7. #27
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    نه گام جهت اجرای موفق آنالیز روغن
    نه گام جهت اجرای موفق آنالیز روغن


    آنچه مسلم است صنایع ، روش آنالیز روغن (Oil Analysis) را با اهدافی چون کاهش میزان مصرف روغنها ، تعیین زمان انجام تعمیرات پیشگیرانه جهت کاهش توقفات و هزینه های نت مورد استفاده قرار میدهند . با اجرای آنالیز روغن ، نمونه ها بصورت تناوبی به آزمایشگاه ارسال شده و نتایج آنالیز دریافت میگردد اما بهبودی در وضعیت نگهداری و تعمیرات حاصل نمیگردد. چرا ؟
    دلایلی مختلفی ممکنست باعث بروز شکست در برنامه آنالیز روغن گردد و جهت ردیابی آنها نیز لازمست تا از مراحل اصولی استفاده از این روش در برنامه های نت آگاه گردیدم .
    مقاله " Nine Steps to Oil Analysis Success " نوشته آقای " Robert Scott " راهنمای بسیاری خوبی در این زمینه بوده که در این قسمت به بیان خلاصه ای از مراحل عنوان شده می پردازم .

    گام اول : تعهد در برابر برنامه
    شخص یا گروه خاصی را جهت پیگیری اجرای برنامه آنالیز روغن مشخص نموده و بودجه مورد نیاز را نیز تخصیص دهید.

    گام دوم : ثبت وضعیت فعلی
    جهت تعیین میزان اثربخشی اجرای برنامه ها ، وضعیت کارکرد فعلی ماشین آلات شامل نسبت خرابیها و هزینه های نت را قبل از اجرای برنامه محاسبه نمائید.

    گام سوم : انتخاب آزمایشگاه مناسب
    آزمایشگاههای ارائه کننده خدمات آنالیز روغن را براساس معیارهایی چون دارا بودن پرسنل مجرب ، تجهیزات مناسب ، استاندارد بودن آزمایشگاه ، ارائه سریع نتیجه آزمایشات و هزینه های انجام آنالیز روغن ، مورد ارزیابی قرار داده و آزمایشگاه مناسب را انتخاب نمائید.

    گام چهارم : انتخاب ماشین جهت آنالیز
    لیست ماشین آلاتی که نیازمند اجرای آنالیز روغن میباشند را تهیه نمائید . از لیست مذکور بحرانی ترین ماشین را که با یک یا دو بار آزمایش نتایج مثبتی نشان خواهد داد را انتخاب نمائید تا مدیریت ارشد سازمان از اثربخش بودن برنامه ها اطمینان حاصل نماید.

    گام پنجم : انتخاب آزمایشات مورد نیاز
    اهداف مورد انتظار خود را در زمینه انجام آنالیز روغن بر روی ماشین یا ماشینهای مورد نظر را به اطلاع آزمایشگاه برسانید تا براساس آن آزمایشات مورد نیاز تعیین گردد .

    گام ششم : نمونه گیری از روغن
    براي هر آزمايشي كه روي روغن صورت گيرد احتياج به نمونه ايست كه نمايندة واقعي كل سيستم باشد. نمونه¬گيري ساده¬ترين مرحله اجراي برنامه آناليز روغن مي¬باشد ولي اهميت بسيار زيادي دارد و در صورت صحيح نبودن نمونه¬گيري نتايج آزمايشات روغن فاقد اعتبار خواهد بود. ‌چهار مورد اصلی در باب نمونه گیری روغن عبارتند از : انتخاب ابزار نمونه گیری روغن - تعیین تناوب نمونه گیری برای اجزاء مختلف ماشین - مشخص نمودن محلهای نمونه گیری روغن در اجزاء مختلف - نحوه نمونه گیری از روغن . لازم به ذکر است که ارائه اطلاعات فوق الذکر از تعهدات آمایشگاه طرف قرارداد میباشد.

    گام هفتم : انجام آنالیز بر روی نمونه روغن :
    آزمایشگاه باید آزمایشات مورد درخواست را بر روی نمونه دریافتی انجام داده و نتایج را حداکثر ظرف 48 ساعت برای شرکت ارسال نماید.

    گام هشتم : تفسیر نتایج
    برخی از سازمانها به دلیل عدم تبحر در امر تحلیل نتایج آنالیز مسئولیت اینکار را نیز برعهده آزمایشگاه میگذارند. آنچه مسلم است تفسیر نتایج و توصیه های اعلام شده از طرف آزمایشگاه اشتباه نمیباشد اما آنچه اعلام میگردد به معنای تمام راه حل نیست و لازم است که تفسیرنهایی توسط پرسنل مختصص بخش CM وباکمک تعمیرکاران و نفرات آشنا به ماشین انجام گردد.

    گام نهم : پیگیری میزان کارائی برنامه آنالیز روغن
    لازم است میزان کارائی و اثربخشی برنامه آنالیز روغن مورد محاسبه قرار گیرد. شاخص میزان صرفه جویی در هزینه نت بعنوان شاخص بسیار مهم در این ارتباط میتواند مورد استفاده قرار گیرد. میزان کاهش توقفات اضطراری ماشین آلات از ناحیه سیستمهایی که مورد آنالیز روغن قرار گرفته اند نیز از دیگر شاخصهای قابل استفاده در تعیین میزان اثربخشی اجرای برنامه آنالیز روغن میباشد.

  8. #28
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    درباره آنالیز روغن بیشتر بدانیم (
    درباره آنالیز روغن بیشتر بدانیم (Oil Analysis)


    مقدمه :
    در دنياي شكسته شدن هر روزه قيمت ها، رقابت جهاني در بازار همواره سخت تر و فشرده تر ميگردد . در اين ميان شايد هيچ واحدي نقشي حساس تر از بخش نگهداري و تعميرات در افزايش و يا كاهش سودآوري يك موسسه توليدي نداشته باشد. يك شركت، به جاي كاهش مطلق هزينه ها مي بايست كه بر روي نتايج بلند مدت و پايدار تكيه كند. پيشرفت همزمان حجم توليد و كيفيت در كنار برقراري موازنه اي بين انواع روش هاي نگهداري، هزينه هاي توليد را به ميزان قابل ملاحظه اي تقليل خواهد داد. به همين دليل اصلِ «نگرش كوتاه مدت متضمن منافع بلند مدت نيست» سرلوحه فعاليت بسياري از موسسه ها و شركت هاي بزرگ و موفق جهاني قرار دارد.
    " آنالیز روغن" از خانواده برنامه های PdM يك برنامه اجرايي نگهداري و تعمیرات بر پايه مراقبت وضعيت شرايط روانكار است كه با تمركز بر وضعيت روانكار و انجام آزمايش هاي گوناگون در محل كار, تجهيزات و آزمايشگاه هاي معتبر, آسيب ها و خسارت هاي وارده به ماشين آلات را به حداقل رسانده , موجب كاهش هزينه ها شده و به افزايش بهره وري و كيفيت فرآورده هاي توليد منجر خواهد شد.

    آزمایش خون – آنالیز روغن :
    یک پزشک حاذق با آزمایش خون بیمار خود اطلاعات گرانبهایی درباره نحوه عملکرد اعضاء و جوارح بدست آورده , درمی یابد که وضعیت قلب , کلیه ها , ششها و کبد بیمار چگونه بوده و با تجویز داروها و ارائه دستورات لازم اقدام به درمان و پیشگیری از بیماریهای خطرناک می نماید.
    روانکار در یک دستگاه همانند خون در بدن انسان است و با همان پیچیدگیهایی که عملکرد خون در رساندن مواد مورد نیاز به قسمتهای مختلف بدن و جمع آوری مواد زائد میکند , روانکار نیز بسیاری از آلودگیها را از محیط عملکرد قطعات دور نموده و مواد مورد نیاز آنها را از قبیل مواد جلوگیری کننده از سایش , مواد مقاوم در برار فشارهای بالا , EP , مواد محافظت کننده در برابر خوردگی و غیره را در اختیار قطعات قرار می دهد.
    از آنجائیکه تماس روغن با قطعات در حال کار در حد تماس مولکولی میباشد , انجام یک سری تستهای بخصوص بر روی روانکار مصرفی میتواند علاوه بر وضعیت کیفی خود روغن , اطلاعات ذیقیمتی در مورد سایر قطعات در تماس با روغن ارائه دهد و یک متخصص علم روانکاری با استفاده از این اطلاعات می تواند برنامه نگهداری و تعمیر مناسب را ارائه دهد.

    آنالیز روغن – شکوفایی صنایع فولاد ژاپن :
    برنامه هاي آنالیز روغن موجب شكوفايي صنايع فولاد ژاپن شده است. در اوايل دهه 80، شركت فولاد ژاپن با اجراي برنامه آنالیز روغن بر روي 170 سيستم هيدروليك، پس از پنج سال به نتايج شگفت انگيزي، مانند 90 درصد كاهش خرابي پمپ، 75 درصد كاهش آلودگي در سيستم و 600 درصد افزايش عمر مفيد پمپ ها دست يافت. اين نتايج موجب ترغيب ساير شركت ها در ژاپن شد، به طوري كه شركت فولاد ناگويا به دنبال موفقيت اوليه در اجراي برنامه آنالیز روغن ، اين برنامه را در تمام كارخانه هاي خود و بر روي 9 هزار گيربكس، 102 هزار ياتاقان و 900 سيستم هيدروليك اجرا كرد و موفق به كاهش 50 درصدي خريد ياتاقان، 90 درصد تقليل آسيب هاي ناشي از روانكاري، 83 درصد مصرف كمتر روغن و 15 درصد كاهش در مصرف گريس شد.

    آنالیز روغن – دسته بندی آزمایشها و نتایج :
    انواع آزمایشات انجام شده بر روی روغنها را میتوان در پنج گروه کلی تقسیم بندی نمود :
    مقدار و نوع فلزات موجود در روغن آزمایش شده : مقدار و نوع فلزات موجود در روغن آزمایش شده , نشان دهنده میزان سایش قطعات مختلف مانند یاتاقانها میباشد و با تکرار آزمایش در فواصل زمانی معین میتوان زمان مناسب جهت تعویض یاتاقان را مشخص نموده و قبل از بروز خسارت برنامه تعمیر آنها را تدوین نمود. اندازه گيري تعداد ذرات جامد بر اساس استاندارد ISO 4406 و بر حسب تعداد در ميلي ليتر حجم روانكار انجام مي شود. بسته به اصول طراحي و كاركرد، تجهيزات گوناگوني براي شمارش ذرات وجود دارد. آماده سازي نمونه و روش نمونه برداري از شروط اصلي صحت و دقت برنامه آناليز روغن است.
    میزان اکسیداسیون روغن : میزان اکسیداسیون روغن نشانه ای از میزان حرارت منتقل شده به قطعات مکانیکی و از آنجا به روغن می باشد و با رسم نمودار اکسیداسیون میتوان مقاطعی را که حرارت بیش از حد اعمال شده را مشخص و عیب یابی نمود.
    مقدار آب موجود در روغن : مقدار آب موجود در روغن نشانی از وضعیت عملکرد آببندها و سیلها میباشد.
    میزان وجود ناخالصیهای محیطی در روغن : میزان وجود ناخالصیهای محیطی نحوه عملکرد *****ها و هواکشها را نشان می دهد.
    آزمایشات کیفی خود روغن : نتایج آزمایشات کیفی خود روغن نیز وضعیت طول عمر روغن را نشان داده و میتوان با دقت زیاد زمان تعویض روغن را اعلام و برنامه نت را با آن تنظیم نمود . از مهمترین آزمایشات کیفی روغن میتوان به آزمايش RULER كه به معناي «تخمين عمر مفيد باقيمانده روغن» است اشاره نمود ، در این آزمایش با اندازه گيري مقدار تركيبات ضد اكسيداسيون و عدد اسيدي روغن، زمان تقريبي پايان يافتن عمر مفيد روانكار را تعيين مي گردد ، به اين مفهوم كه با افزايش عدد اسيدي يا TAN روغن، مسلماً از مقدار و كارآيي مواد افزودني با خاصيت ضداكسيداسيون كاسته مي شود و زماني فرا مي رسد كه ميزان ادتيوهاي ياد شده به قدري كاهش يافته است كه روغن كاملاً اسيدي و خورنده شده و ادامه فعاليت آن موجب آسيب هاي شديد به دستگاه خواهد شد. آزمایش ویسکوزیته یا گرانروی نیز از آزمایشات رایج در برنامه آنالیز روغن میباشد , در صورت كاهش ويسكوزيته، امكان تشكيل فيلم پايدار روانكار به حداقل مي رسد و بر اثر تماس فلز با فلز، سايش شديدي ايجاد گردیده كه نتيجه مستقيم آن، عمر كمتر دستگاه خواهد بود.
    سخن آخر ...
    بازکردن فایلی خاص بنام آنالیز روغن و در نظر گرفتن یک سری آزمایشات در زمان بهره برداری از دستگاهها باعث کاهش بسیاری از هزینه ها چه از نظر طول عمر قطعات و چه از لحاظ زمان بهینه تعویض روغن گردیده و مسئولان فنی کارخانجات را در جهت هرچه بهتر نگهداری و کارآمد کردن ماشین آلات یاری می نماید.

  9. #29
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    ضرورت طراحی و نصب سیستم هیدرولیک
    ضرورت طراحی و نصب سیستم هیدرولیک برای " دور کمکی" کوره های واحد اول و دوم

    مقدمه :
    در حال حاضر جهت راه اندازی کوره ها با دور کم از یک الکترموتور ELIN و یک گیربکس FELENDER استفاده می شود که بنا به دلایل فنی و مشکلاتی که ممکن است در اثر اختلالات برقی بوجود آید ، احتمال عدم توانایی در راه اندازی کوره را قوت می بخشد. می توان با جایگزینی یک سیستم " دیزل – هیدرولیک " بجای تجهیزات فعلی ، ریسک استارت نشدن موتور برقی را حذف ، و زمان توقف را کاهش داد .
    به منظور روشن شدن ضرورت جایگزینی سیستم فوق با سیستم فعلی بایستی وضعّیت موجود ، تشریح و معایب و محسنّات هر دو سیستم از دیدگاه فنی و اقتصادی مورد مقایسه قرار گیرد تا پشتوانه مناسبی برای اجرای پروژه ، مستدل گردد.
    وظیفه سیستم دور کمکی :
    استارت کوره ها با دور کمکی توسط الکتروموتور و یا موتور دیزل و یا هیدروموتور و یا ترکیبی از آنها رایج است که هرکدام داری معایب و محسناتی می باشند که چنانچه در طراحی آن دقت نظرهای لازم صورت گیرد می تواند به بهترین روش و با کمترین ریسک منجر شود.
    کوره های واحد و اول و دوم سیمان آبیک مجهز به 2 الکتروموتور و 2 گیربکس می باشند که در طرفین گیربکس و موتور اصلی کوره قرار می گیرند.
    قبل از راه اندازی کوره با دور اصلی ، موتور کمکی استارت و گشتاور مورد نیاز از طریق گیربکس کمکی به گیربکس اصلی منتقل می گردد ، و گاهی نیز در طول توقفات کوتاه مدت کوره ، مشعل کوره خاموش نمی گردد و در صورتی که کوره در موضع ثابت باقی بماند ، آستر نسوز ، بدنه کوره ، رینگها و غلطکها وهم چنین فعل وانفعالات شیمیایی مواد داخل کوره نیز بطور جدی صدمه می بینند . لذا جهت جلوگیری از صدمات فوق که با ده ها میلیون تومان خسارات مالی همراه است ، بایستی کوره را با دور کمکی به گردش در آورد. با استارت الکتروموتور کمکی ، گیربکس کمکی شروع به کار می کند و محور خروجی گیربکس ، محرک محور ورودی گیربکس اصلی می گردد و بدین ترتیب کوره با دور کم به چرخش در می آید. یکی از الزام آورترین خصوصیات این نوع کوره ها اینست که یرای به گردش درآوردن کوره از 2 الکتروموتور و 2 گیربکس در طرفین محور کوره استفاده شده است ، در نتیجه سنکرون بودن موتورها و گیربکسهای دو طرف ، اصلی ترین فاکتور بهره برداری از سیستم درایو کوره است و چنانچه همزمانی دوران گیربکس مورد توجه قرار نگیرد ، تخریب و خسارت بر تجهیزات مختلف کوره ، حتمی خواهد بود. و همین زوج بودن محرک باعث گردیده که نتوان کوره های سیمان آبیک را نیز مانند بعضی از کارخانجاتی که کوره سبکتری دارند واز موتورهای بنزینی - هوا خنک ( فولکس) استفاده می کنند ، فقط با یک محرک به چرخش درآورد. بعنوان مثال اگر سعی شود که فقط با سیستم دور کمکی یکی از طرفین ، کوره را به چرخش درآورد بدلیل اینرسی زیاد کوره ، فشار بیش از حدی به موتور و گیربکس کمکی و همچنین پایه های بتنی غلطکها وارد شده و حتی امکان چرخش دنده گیربکس اصلی حول محور خود را بوجود خواهد آورد و هزینه توقف تولید و بازسازی و تعمیرات به چند ده میلیون تومان خواهد رسید.از طرفی نیز اگر بخواهیم از 2 موتور بنزینی و یک گیربکس سنکرون استفاده کنیم ، شاید از نظر فنی قابل قبول باشد اما ، هزینه انتخاب ، طراحی و نصب چنین گیربکسی ، اندک نخواهد بود. و نکته مهمتر ایتست که ، تنها مسئله بچرخش در آمدن کوره کافی نیست بلکه ، کنترل و راهبری سیستم کمکی نیز باید مدّ نظر قرار گیرد تا در صورت لزوم بتوان کوره را در موضع و موقعیت های مختلف با توجه به اینرسی فوق العاده آن به هنگام راه اندازی و همینطور در هنگام ترمز در زمان چرخش بطور دقیق کنترل و متوقف نمود.

    ضرورت جایگزینی سیستم جدید :
    در سیستم محرک دور کمکی فعلی ، نیروی برق تنها منبع انرژی مورد استفاده است که در صورت نقص ، کار سیستم را مختل می نماید و اگر سوابق توقف ماشین آلات بدلیل اشکال برقی ، مورد بررسی قرار گیرد ، بالا بودن ریسک وایستگی کامل به نیروی برق ، کاملا ملموس و قابل درک خواهد بود. بطور مثال گاهی هنگام توقف کوره برای جلوگیری از آسیب به عایق نسوز ، الکترو موتور استارت نشده و کوره چندین ساعت در یک موقعیت ثابت مانده است و یا قطع بودن برق کارخانه اجازه استارت به الکتروموتور را نداده است و حتی یکبار نیز هنگام قطع سراسری برق کارخانه که کوره بطور ناگهانی متوقف گردید ، دیزل ژنراتور کارخانه نیز استارت نشد و باعث موزی شدن کوره گردید که اگر کوره به سیستم دیزل اختصاصی مجهز بود ، احتمال آسیب دیدن کوره تا حد صفر کاهش می یافت .
    مشخصات سیستم فعلی:
    گیربکس
    کمکی
    FELENDER تعداد :
    برای هر کوره = 2 توان:
    63 KW گشتاور:
    422
    NM N1 :
    1450 rpm N2 :
    65 rpm
    الکتروموتور
    کمکی
    ELIN تعداد :
    برای هر کوره = 2 توان:
    66 KW V= 380
    A= 120
    Cos f = 0.9 N :
    1450 rpm

    مشخصات فوق برای هر دو کوره واحد اول و دوم تقریبا مشابه است و لذا می توان یک طرح را برای هر دو تعمیم داد.نکته حائز اهمیت در اینجا ، میزان گشتاور مورد نیاز برای به چرخش دراوردن کوره ها در لحظه استارت می باشد که احتمالا مقدار فعلی (NM422) با توجه به افزایش ظرفیت کوره ها در برنامه توسعه کارخانه تا حد 470 نیوتن متر افزایش خواهد یافت.

    سیستم های هیدرولیک:
    برای آشنایی با سیستم های هیدرولیک مورد استفاده در دور کمکی کوره های سیمان ، از کارخانه سیمان تهران بازدید شد و اطلاعات بسیار ارزشمندی در قالب فیلم و عکس تهیه گردید که در آرشیو خدمات مهندسی کارخانه موجود می باشد .
    1- محل بازدید: کارخانه سیمان تهران- کوره 4000 تنی واحد ششم.
    طراح : POLIYSIUS
    محرک دور کمکی : هیدروموتور
    یک موتور دیزل 6 سیلندر در اطاقک زیر کوره نصب گردیده که در مواقع نیاز به دور کمکی ، توسط مدار فرمان برقی استارت می گردد و سیستم هیدرولیک را که متشکل از هیدروپمپ FILLER برای تغذیه سریع مسیر هیدرولیک ،
    هیدروپمپ اصلی به منظور ایجاد دبی مورد نیاز ،
    شیر کنترل فشار ، بعنوان SAFTY VALVE SYSTEM ،
    شیر اصلی کنترل مسیر بعنوان MASTER DIRECTIONAL VALVE ،
    و شیر های کنترل دبی به منظور تنظیم دبی مورد نیاز می باشد که از طراحی وترکیب این عناصر ، سیستم هیدرولیک بشکل یک POWER UNIT درآمده و بوسیله هدایت کننده ها ( لوله ها ، شیلنگها ، اتصالات ) از طریق مجاری سقف اطاق دیزل به هیدروموتورهای کوپل شده به گیربکس کمکی ، روغن را با دبی و فشار قابل کنترل میرسانند که هیدروموتورهای سمت چپ و سمت راست کوره بتوانند گشتاور مورد نیاز برای بچرخش درآوردن کوره را ایجاد نمایند.
    یک سیستم شارژباطری نیز برای موقع قطع برق در کنار مدار فرمان استارت ، طراحی شده و درصورت لزوم ، می تواند منبع تغذیه استارتر باشد.
    2- محل بازدید: کارخانه سیمان تهران- کوره 2100 تنی واحد چهارم.
    طراح : FLSHMIDTH
    یک موتور دیزل که شفت خروجی آن بوسیله یک اهرم دستی به یک کوپلینگ متصل شده و توسط کوپلینگ به یک مبدل گشتاور که می تواند گشتاور موتوردیزل را بصورت سنکرون در 2 جهت چپ و راست منتقل نماید متصل شده است که گشتاور مورد نیاز را برای بحرکت درآوردن 2 دستگاه هیدرو پمپ که بصورت موازی در طرفین چپ و راست سیستم راه انداز ، نصب شده اند ، تامین می کند.
    در این سیستم نیز همانند کلیه سیستم های هیدرولیک از شیرهای کنترل فشار ، دبی ، مسیر و هدایت کننده ها استفاده شده است که درنهایت روغن را به هیدروموتور منتقل و چرخش کوره با دور کمکی را باعث می شوند.
    در سمت مقابل موتور دیزل نیز یک الکتروموتور با توانی برابر با موتور دیزل نصب گردیده که در مواقع عادی که برق وجود دارد می تواند بعنوان محرک سیستم هیدرولیک ، فعال شود. بنابراین در شرایط نرمال ، سیستم راه اندازی دور کمکی بصورت برقی و با الکتروموتور ، و در شرایط اضطراری توسط موتور دیزل ، استارت می گردد.

    جدول 1 - مقایسه سیستم های مورد استفاده در واحد چهارم و ششم کارخانه سیمان تهران:
    سیستم چرخش دور کمکی کوره 4000 تنی :
    POLIYSIUS)) سیستم چرخش دور کمکی کوره 2100 تنی :
    (FLSHMIDTH )
    معایب:
    1-نگهداری و تعمیر موتور دیزل
    2-نگهداری و تعمیر سیستم هیدرولیک
    3-استارت دور کمکی فقط توسط دیزل
    محاسن :
    1-عدم وابستگی به جریان برق
    2-چرخش سنکرون
    معایب:
    1-نگهداری و تعمیر موتور دیزل
    2-نگهداری و تعمیر سیستم هیدرولیک

    محاسن :
    1-عدم وابستگی به جریان برق
    2-چرخش سنکرون
    3-بهره برداری از سیستم هیدرولیک بوسیله الکتروموتور
    4-استفاده از مبدل گشتاور برای هماهنگی سیستم هیدرولیک
    5-طراحی ساده و استفاده از کمترین تجهیزات

    جدول 2 – مقایسه سیستم های صرفا برقی و سیستم های صرفا دیزل:
    فقط برقی: فقط دیزلی / بنزینی
    معایب:
    1- وابستگی کامل به جریان برق
    2- ریسک بالا بدلیل احتمال زیاد قطع برق
    محاسن:
    1- سنکرونیزاسیون بهتر
    2- بهره برداری راحت تر
    3- سادگی طراحی معایب:
    1- مشکل بودن سنکرون نمودن موتورها در کوره هایی که بایستی با 2 موتور مورد استفاده قرار گیرند.
    2- در صورت استفاده از مبدل گشتاور ( دیفرانسیل ) ، ابعاد تجهیزات بسیار بزرگ و حجیم خواهند بود.


    مشکلات مربوط به سیستم های صرفا برقی کاملا مشخص است و تجربه موزی شکل شدن کوره واحد دوم نمونه بارز ناکافی بودن این سیستم ها می باشد ، که نهایتا منجر به چاره اندیشی و استفاده از یک سیستم تلفیقی " دیزلی – هیدرولیکی " برای دور کمکی کوره ها گردیده است.
    در بعضی از کوره های سبک از یک موتور بنزینی فولکس جهت چرخش با دور کمکی استفاده شده است . استفاده از یک موتور مکانیکی فقط در کوره های سبک امکان پذیر می باشد و در کوره هایی که به منظور جلوگیری از " بار جانبی " ( (Side Load باید از 2 موتور استفاده شود ، احتمال سنکرونیزاسیون موتورها بدون استفاده از تمهیدات و تجهیزات بسیار گرانقیمت امکان ندارد.
    در سیستم های تلفیقی ( برقی- هیدرولیکی – دیزلی ) فقط در شرایطی که مشکل برقی وجود داشته باشد از موتور دیزل استفاده می شود و ریسک عدم موفقیت استارت کوره بستگی به شرایط نگهداری و تعمیرات موتور دیزل کوپل شده به سیستم هیدرولیک دارد و از طرفی نیز هوای سرد باعث افزایش ریسک عدم استارت دیزل را افزایش می دهد که در هر دو صورت چنانچه برنامه مدونی برای نگهداری موتور دیزل و تامین محل مناسب با دمای کنترل شده ، وجود داشته باشد ، بهترین گزینه برای جلوگیری از صدمات ناشی از توقف کوره گرم را خواهیم داشت.
    جدول 3 – مقایسه موتور دیزل و بنزینی برای سیستم های تلفیقی هیدرولیک- دیزلی/بنزینی
    بنزینی دیزلی
    معایب:
    1- مصرف سوخت بیشتر
    2- توان محدود
    3- محدودیت خدمات و لوازم یدکی
    محاسن:
    1- استارت راحت تر در هوای سرد معایب:
    1- آلودگی بیشتر
    2- نیاز به محیط گرم در فصل سرما

    محاسن:
    1- نیاز به محیط گرم در فصل سرما
    2- مصرف سوخت کمتر
    3- توان بیشتر

    با تجزیه و تحلیل مقایسه ای مزایا و معایب هر یک از روشهای فوق ، روش استفاده از سیستم "موتوردیزل – هیدرولیک – الکتروموتور " ، کاملا بهینه و منطقی بنظر می رسد.
    درحال حاضر جهت راه اندازی سیستم مورد نظر می بایست نکاتی را در نحوه انتخاب تجهیزات و قطعات مورد توجه قرار داد که درصورت نیاز به طراحی داخلی ، اگاهی ازاین نکات الزامی خواهد بود.
    سیستم هيدروليك دور کمکی کوره ، نيروي خود را از دوران يك هیدروپمپ به دست مي آورد. اين دوران زماني ايجاد ميشود كه يك سيال تحت فشار وارد محفظه هیدروموتور شود. وضعيت سيال توسط پمپ و شيرهائي جهت افزايش، كاهش و يا حفظ فشار به صورت مورد نياز درآمده و ميتواند نيروي لازم براي به حركت درآوردن محور خروجی هیدروموتور را فراهم كند. بنابراين نيروي موجود درسیستم هيدروليك با حداكثر فشار موجود در هیدرو موتور تعيين ميشود.
    دور کمکی هيدروليك قادر است گشتاور كامل خود را در هر وضعيتي از دوران هیدرو موتور به گیربکس اصلی اعمال نمايد. همچنين میزان دوران را ميتوان در هر حدي از مسير چرخش محدود ساخت. اين در حالي است كه در سیستم های برقی یا مكانيكي ، توقف كامل را تنها در انتهاي مسير دوران پس از ترمز ميتوان كسب نمود.
    ويژگيهاي سیستم هيدروليك کوره را به صورت زیر ميتوان خلاصه نمود:
    1- تغيير و تنظيم سرعت دوران در حالت ايجاد نيروي ثابت
    2- تنظيم نيروي وارده به ميزان مورد نياز
    3- قابلیت اندازه گيري و كنترل الكترونيكي نيروي وارده طي دوران کوره
    نکات قابل توجه در طراحی سیستم هیدرولیک کوره :
    تعيين فشار كاري سيستم
    براي تعيين سطح فشار در يك سيستم هيدروليك بايد در نظر داشت كه با بالا بردن فشار ميتوان از المانهاي هيدروليكي كوچكتري براي رسيدن به تناژ مورد نظر، استفاده نمود. همچنين قطر لوله ها را ميتوان كوچكتر انتخاب نمود. در نتيجه، هزينه ساخت سیستم هدرولیکی کوره كاهش مي يابد. اما از طرف ديگر با افزايش فشار، روغن در سيستم زودتر داغ ميكند، نشتي ها بيشتر و اصطكاك و سايش نيز افزايش مي يابد. در نتيجه فاصله انجام سرويس ها بايد كوتاهتر شود. همچنين نويز و پيكهاي فشاري نيز افزايش يافته و خواص مطلوب ديناميكي سيستم كاهش مي يابد. بنا براین ساخت چنین سیستمی نیاز به اطلاعات فنی و تجربه کافی دارد که در این زمینه با شرکتهای متخصص و کارشناسان مجربی گفتگو شده است .

    اجزاء اصلي سيستم هيدروليك دور کمکی کوره
    تجهیزات و عناصر مورد نیاز برای طراحی و ساخت / خرید داخلی / خرید خارجی ، برای هریک از کوره ها بشرح زیر می باشد:
    1- موتور دیزل - 1 دستگاه
    2- هیدروپمپ - 2 دستگاه
    3- هیدروموتور- 3 دستگاه
    4- شیرهای کنترل مسیر ، کنترل فشار ، کنترل دبی، مقسم جریان
    5- هدایت کننده
    6- پاور یونیت
    در صورتی که قرار بر طراحی و ساخت داخلی باشد ، می توان با تهیه تجهیزات اینکار را انجام داد ولی بایستی قبل از شروع کار ، نکاتی را در رابطه با طراحی ، مد نظر قرار گیرد.
    بطور مثال در سا يزينگ پمپ ها حدود ده درصد به دبي تعيين شده از طريق محاسبات تئوريك اضافه مينمايند.
    در انتخاب شير اطمينان (فشار شكن)، فشار تنظيمي بايد ده درصد بيشتر از فشار كاري سيستم باشد.
    برای انتخاب یک هیدروموتور حداقل موارد زیر باید مشخص گردد:
    تعيين گشتاور و سايز هيدروموتور :
    T(N.m) = 0.016 X ∆P (bar) X Vg(cm3)
    • حجم جابجایی روغن بر حسب cm3
    • حداکثر دبی مجاز عبوری از موتور و حداکثر سرعت
    ثابت گشتاور برحسب Nm/bar . توسط این ثابت میتوان مقدار گشتاور موتور را در فشار های کاری مختلف محاسبه نمود.
    حداکثر گشتاور موتور در اختلاف فشار ماکزیمم بر حسب Nm
    در صورتی که بخواهیم طراحی و ساخت توسط شرکتهای داخلی ، انجام شود بایستی با شرکتهای موجود تماس گرفته شود که در این راستا فعالیتهایی انجام گرفته است.

    نحوه انتخاب پمپهاي هيدروليك
    اولين مرحله در انتخاب مدار تغذيه و تعيين پمپ مناسب براي يك كاربرد معين در سيستمهاي هيدروليك، بررسي تقاضاهاي فشار/جريان در مدار است. ابتدا منحني هاي جريان و فشار در يك سيكل زماني بايد بررسي شود. سپس همزماني مصرف درالمانهاي مختلف تعيين گردد. بدين نحو حداكثر جريان مورد نياز مشخص ميگردد. براي تعيين يك مدار تغذيه مناسب به موارد ذيل بايد توجه نمود:
    1- در سايزينگ پمپ ها در عمل بايد (10 % ) به دبي تعيين شده از طريق محاسبات تئوريك اضافه نمود.
    2- در انتخاب شير اطمينان (فشار شكن)، فشار تنظيمي بايد (10 % ) بيشتر از فشار كاري سيستم باشد.
    هر دو مورد (1) و (2) باعث ميشود توان بيشتري در سيستم هيدروليك تزريق شود.
    3- اگر دبي پمپ در يك دور مشخص ( مثلا 1500 rpm ) ارائه شده باشد، براي بدست آوردن دبي پمپ در دور كاري (مثلا 1440 rpm ) از رابطه زير ميتوان استفاده نمود:

    كه در آن :
    n1: دور تئوريك دوران پمپ (rpm )
    n2 : دور كاري ( rpm)
    : دبي پمپ در دور تئوريك ( lit/min )
    : دبي پمپ در دور كاري ( lit/min )
    فشار كاري در خروجي پمپ
    اين مشخصه تحت عنوان Operating Pressure-Outlet و با واحد bar ارائه ميشود و نشانگر ماكزيمم فشاري است كه پمپ قادر به ايجاد آن ميباشد. البته لازم به يادآوري است كه پمپها ايجاد جريان ميكنند و قرار گرفتن يك مانع در برابر اين جريان، باعث ايجاد فشار ميگردد. فشار كاري معمول براي پمپ هاي دنده أي به صورت 250,225,200,175,150,100,50,10 بار ميباشد.

    فشار كاري در ورودي پمپ
    اين مشخصه تحت عنوان Operating Pressure-Inlet و با واحدbar ارائه ميشود و نشانگر محدوده قابل قبول براي اعمال فشار در ورودي پمپ ميباشد. ورودي پمپ را به خط مكش وصل مينمايند كه توسط آن روغن از منبع به سمت پمپ مكيده ميشود. در حقيقت مكش فقط يك كلمه است كه براي نشان دادن سمت روغن گيري پمپ بكار ميرود. اصولا مايعات قابل كشيده شدن نيستند بلكه فقط با نيروي فشار خارجي هل داده ميشوند.
    قدرت كشش يك پمپ بستگي به ميزان اختلاف فشار سمت مكش پمپ و فشار هواي روي سطح مايع دارد. بنابراين حتي اگر يك پمپ بتواند توليد خلا مطلق كند، مقدار ارتفاع كشش مايع آن از حداكثر نيروي فشار جو ***** نميكند و حد نهايي ارتفاع كشش را حداكثر فشار وارده بر سطح مايع از طرف هواي بيرون تعيين ميكند و به قدرت پمپ بستگي ندارد از اين رو ارتفاع مكش پمپها محدود ميباشد و هر چه پمپ نزديكتر به سطح مايع نصب شود، مايع راحت تر و آسان تر به سمت پمپ رانده ميشود و احتمال ايجاد كاويتاسون كمتر ميشود. به طور معمول فشار كاري در ورودي پمپ ها بين –0.3bar و +1.5bar ميتواند باشد.
    سرعت دوران پمپ
    ميزان دبي حجمي روغن كه توسط پمپ ايجاد ميگردد، تابع سرعت دوران آن ميباشد. اين سرعت براي پمپها ي مختلف عددي متغير است. براي مثال بعضي پمپها را ميتوان با دوري بين 500rpm و 5000rpm به دوران واداشت. با اينحال معمولا" مشخصات اصلي پمپها را در دور بخصوصي (1450rpm) ارائه ميكنند.
    حجم جابجايي روغن
    هر پمپ بسته به سرعت دوران خود به ازاء هر دور چرخش چرخدنده ها، مقدار معيني از روغن را جابجا ميكند. واحدي كه براي بيان حجم جابجايي بكار ميرود معمولا cm3/rev ميباشد. حجم جابجايي عددي است كه تابع مشخصات ابعادي چرخدنده ها مانند قطر، مدول، پهنا، . . . و همچنين سرعت دوران پمپ ميباشد. رنج معمول حجم جابجايي بين 3.5 و100 ليتر بر دور ميباشد.
    دبي موثر
    دبي موثر توليدي توسط يك پمپ باعبارت Qeff مشخص ميگردد ومقدار آن در يك سرعت دوران، ويسكوزيته و دماي كاري بخصوص تعريف ميگردد. براي مثال در دور n=1450 rpm ،ويسكوزيته =36 cSt و دماي كاري t=50C ، ميزان دبي موثر را براي يك پمپ بر حسب lit/min تعيين مينمايند. به طور معمول محدوده دبي موثر يك پمپ دنده أي بين 2 تا 150 ليتر بر دقيقه ميباشد.


    توان موتور راننده پمپ
    پمپهاي هيدروليك معمولا توسط الكترو موتور بكار انداخته ميشوند. توان موردنياز براي دوران پمپ نيز بستگي به سرعت دوران، دماي كاري و ويسكوزيته روغن دارد. در اين مورد نيز معمولا توان مورد نياز را در دور n=1450 rpm ،ويسكوزيته =36 cSt و دماي كاري t=50C ، بر حسب KW تعيين مينمايند. محده توان مورد نياز براي پمپ دنده أي بين 1 تا 38 كيلو وات ميباشد.
    در مورد سیستم دور کمکی کوره موتور دیزل از سمت مقابل الکتروموتور نصب می گردد . با توجه به محدودیتهای مالی شرکتهای طراح سیستم هیدرولیک پیشنهاد می گردد انتخاب موتور بعهده شرکت پیمانکار بوده و خرید آن توسط کارخانه باشد.
    دماي كاري روغن
    براي آنكه پمپ به صورت موثر بتواند دبي مورد نياز را تامين نمايد، دماي روغن در حال انتقال بايد در محدوده مشخصي قرار داشته باشد. اين محدوه براي روغن هاي معدني بين -20 تا +70 ميباشد.
    درجه ويسكوزيته
    روغني كه پمپ ميتواند به صورت موثر منتقل نمايد بايد داراي درجه چسپندگي بخصوصي باشد. رنج ويسكوزيته معمول براي پمپ هاي دنده اي بين 5 تا 300 سانتي استوك ميباشد.

    فيلتراسيون
    حداكثر ابعاد ذرات خاجي كه اجازه ورود به پمپ را دارند بايد توسط يك عدد مشخص نمود و سپس ذرات با ابعاد بزرگتر را توسط ***** مناسب جمع آوري نمود و مانع ورود آنها به پمپ گرديد. بزرگترين ابعاد ذرات خارجي كه اجازه ورود به پمپ را دارند معمولا كوچكتر از 25m مي

  10. #30
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    شناسایی مشکلات فن پرایمری کوره از طریق تحلیل ارتعاشات

    چکیده:

    در بازرسی های بعمل آمده از فنهای کارخانه سیمان ، افزایشی در دامنه ارتعاشات بیرینگهای فن پرایمری کوره ملاحظه شد که روند صعودی ویبره و صدای غیرعادی ، نشانه های خستگی فلزی و آغاز تخریب در Inner Race و Outer Race بیرینگ را آشکار می ساخت. بدلیل بهره برداری از کوره ، امکان توقف و تعویض بیرینگ وجود نداشت و تنها راه کاهش صدمات تا زمان توقف کوره ، کنترل حرارت و روانکاری بوسیله گریس نسوز با گرید بالاتر بود. در طول مدت بهره برداری با توجه به حساسیت موضوع ، فن مذکور تحت مراقبت قرار گرفت تا در صورت ایجاد وضعیت بحرانی ، از ادامه کار فن جلوگیری شود. ثبت تغییرات فرکانسی ارتعاشات و بالطبع تغییرات داخلی بیرینگ در تمام مدت کنترل وضعیت فن از نظر کسب تجربه و تایید نظرات کارشناسی از آن جهت که می تواند بعنوان یک منبع و مرجع Condition Bearing مورد استفاده قرار گیرد حائز اهمیت بود .

    واژه های کلیدی:
    تحلیل ارتعاشات – بیرینگ - Inner Race و Outer Race – نابالانسی ایمپلر

    مقدمه:
    تجزیه و تحلیل ارتعاشات فن ، به کمک آنالیز طیف فرکانسی ، عامل موثری در شناسایی عیوب بیرینگ و ایمپلر فن ها می باشد که در جلوگیری از گسترش ضایعات و تخریب تجهیزات نقشی اساسی دارد.
    گاهی اوقات با توجه به شرایط بیرونی و درونی تولید ، تعویض یا تعمیر یک قطعه مانند" بیرینگ فن" توجیه اقتصادی نداشته و علیرغم مشاهده وضعیت غیرعادی بیرینگ ، تا زمانی که باعث آسیب جدی به فرایند تولید نشده است نمی توان تولید را متوقف نموده و با تحمل " هزینه فرصت " بسیار گزاف ، نسبت به تعویض آن اقدام نمود . امّا با ثبت و تحلیل فرکانسهای ارتعاشات می توان این تهدید را به فرصت تجربه اندوزی و شناخت ارتعاشات تبدیل نمود .

    در تاریخ 14/1/83 بدلیل وجود صدای غیر عادی در بیرینگ فن ، نسبت به اندازه گیری و تحلیل ارتعاشات فن مذکور اقدام گردید که نتایج حاصله ، با توجه به مشخصات فن و بیرینگها ، نشان دهنده شروع خرابی در بیرینگ بود:
    مشخصات فن:

    Type 2556 R80315
    V 4.666 m^3 /s
    Pw 88 Kw
    n 2320 rpm
    Tmax 100 C
    P tot 14.75 K pa
    بطوری که در تصویر 1 ملاحظه می گردد در تاریخ فوق بیرینک 1 در وضعیت افقی ، بیشترین ارتعاش را در فرکانس بالا ایجاد می کند که نشانه آغاز عیب در رولرهای بیرینگ است و در تصویر 3 که ارتعاشات همان بیرنگ را در دومین روز اندازه گیری نمایش می دهد ، کاهش مختصری در ارتعاشات دیده می شود که در اثر گریسکاری کامل و حتی بیش از حد بیرینگ بوده است.

    وضعیت
    شتاب محوری
    افقی عمودی
    برحسب g 1.323 3.44 2.81

    رولر های بیرینگ که بعد از دمونتاژ یاتاقان ، از داخل بیرینگ جدا شده اند مشاهده می گردند. خرد شدن قسمتی از لبه رولر که در اثر گریسکاری ناقص و حتی عدم روانکاری بوجود آمده است کاملا قابل رویت می باشد.

    3 – وضعیت ارتعاشات پس از روانکاری
    وضعیت
    شتاب محوری
    افقی عمودی
    برحسب g 1.17 2.45 1.14

    این کاهش ارتعاشات در اندازه گیری شتاب ارتعاشات بیرینگ که معیار سلامتی و خرابی بیرینگها می باشد نیز کاملا مشهود است . بدلیل عدم دسترسی به مشخصات فرکانسی مرجع ، برای تحلیل ارتعاشات اندازه گیری شده ، داده های جمع آوری شده که شامل قطر داخلی و خارجی بیرینگ ، قطر و طول رولر ها ، قطر قفس رولرها و سرعت چرخش رولر ها می گردید را با استفاده از فرمولهای 4 گانه استاندارد بیرینگها ، محاسبه ، و خرابی های بیرینگ پیش بینی شده بود.

    فرمولهای مورد استفاده برای مشخص کردن وضعیت بیرنگها در جدول زیر نشان داده شده است.
    Type of Defect Expected Frequency
    Defect on Outer Raceway (BPFO)
    Defect on Inner Raceway (BPFI)
    Defect on Rolling Element (2xBPF)
    Fundamental Train Frequency (FTF)

    در چندین مرتبه اندازه گیری ارتعاشات ، افزایش خرابی بیرینگ که ابتدا از رولر ها شروع شده و به inner race و out race بیرینگ توسعه یافته بود مشاهده می گردید.

    تخریب Outer Race

    واز طرف دیگر، افزایش حرارت یاتاقان و بروز ویبره هایی که حاکی از نابالانسی در ایمپلر فن بود شرایط کار بیرینگ را سخت تر می نمود. ولی بدلیل اهمیت کار کوره ، تعویض یاتاقان فن ، تا زمان توقف کوره به تعویق افتاد . پس از دمونتاژ فن مشاهده شد رینگ نشیمنگاه پروانه فن که از آلومینیوم آلیاژی تهیه شده است ، بطور خطرناکی دچار شکستگی شده و تاحدودی نیز باعث خرابی شفت ایمپلر گردیده است . این شکستگی باعث ارتعاشات محسوسی در وضعیت افقی بیرینگها شده بود که در آنالیز طیفهای فرکانسی ، مشخص می باشد.

    نتيجه گيری :
    عدم بازديد و تعويض بموقع ياتاقان پروانه فن پرايمری که عيوب آن توسط آناليز ارتعاشي ياتاقانها مورد شناسائي گرديده بود
    نه تنها سبب از بين رفتن بيرينگها گرديده است ، بلکه سبب بوجود آمدن آسيب جدی به پروانه فن گرديده است .

صفحه 3 از 10 نخستنخست 12345678910 آخرینآخرین

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •