نمایش نتایج: از شماره 1 تا 8 , از مجموع 8

موضوع: دنياي فيزيك 2

  1. #1
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    24 دنياي فيزيك 2

    يروگاههاي هسته اي وبمب هاي هسته اي چگونه كار ميكنند؟ اين روزها در مجلات,روزنامه ها,تلويزيون وغيره از همه چيز ميشنويم ولي بيشتر از همه فعاليت هاي صلح آميزوغير صلح آميز هسته اي است كه ذهنمان را مشغول ميسازد.در اينجا سعي بر آن است كه مطالب حتي الامكان به صورت عامه فهم وبه گونه اي كه حق مطلب ادا شود,براي شما توضيحاتي پيرامون بمب هاي هسته اي ,تشعشعات هسته اي ونيروگاههاي هسته اي عنوان شود.

    قبل از اينكه به اصل موضوع بپردازيم خدمت دوستان خوبم بايد عرض كنم كه اين مطالب ممكن است براي عده اي از دوستان بسيار پيش پا افتاده وساده باشه به هر حال شما به بزرگي خودتون ببخشيد و اينو هم در نظر بگيريد كه مخاطب هاي اين وبلاگ ممكنه از هر قشري باشند پس ما هم مجبوريم كه ملاحظه حال اونا رو هم بكنيم....

    و اما اصل موضوع....

    ميدانيم كه دنياي اطرافمان از 92 عنصر موجود در طبيعت ساخته شده است. به اين شكل كه عناصر از اتم ها ساخته شده اند وتشكيل مولكول آن عنصر را ميدهند و اگر اين مولكولها در كنار يكديگرقرار گيرند ماده بوجود مي آيد. بسياري از مواد از عناصر مختلف تشكيل شده اند بنابراين اتم هاي مختلفي در آنها وجود دارد. لازم به ذكر است قطر اتم 10 به توان منفي ده متر ميباشد واندازه هسته در مركز اتم0001/0 بزرگي اتم كوچكتر است و يا به عبارتي دقيقتر قطر كامل هسته به طور ميانگين 10به توان منفي 15 متر ميباشد.

    ابتدا به تشريح ساختمان اتم ميپردازيم:

    در داخل هر اتم سه ذره وجود دارد:الكترون با بار منفي , پروتون با بار مثبت و نوترون خنثي. بارهاي همنام يكديگر را دفع و بارهاي غير همنام يكديگر را جذب ميكنند بجز نوترون كه هيچ عكس العملي ندارد.

    هسته اتم هر عنصر از پروتون و نوترون تشكيل شده است كه مجموع تعداد آنها را عدد اتمي آن عنصر ,وبه آنها نوكلئون ميگويند. لازم به ذكر است جرم نوترون 675/1ضربدر 10 به توان منفي 27 كيلوگرم ,وجرم پروتون 673/1ضربدر 10 به توان منفي 27 ميباشد.

    پروتون هاي تشكيل دهنده هسته اتم چون داراي بار مثبت هستند پس طبيعي است كه يكديگر را دفع كنند براي جلوگيري از اين اتفاق نوترون ها مانند چسبي از متلاشي شدن هسته جلوگيري ميكنند.الكترون ها نيز در مدارات بيضي شكل و نامنظم در اطراف هسته با سرعت بسيار زياد در حال گردشند وهر چه اين الكترون ها به لايه والانس نزديكتر ميشوند تعلق آنها به هسته كاهش ميابد(بر اساس مدل اتمي بور).

    اما اگر بخواهيم علمي تر بحث كنيم بايد بگوئيم تقريبا سه نيرو در هسته هر اتم وجود داردكه يكي از آنها سعي در انهدام هسته و دو تاي ديگر سعي در پايداري هسته دارند. اولي نيروي كولني يا همان دافعه پروتوني ميباشد , دومي نيروي گرانش ناشي از جاذبه بين ذرات جرم دار است وسومي كه مهمترين دليل جلوگيري از متلاشي شدن هسته ميباشد همان نيروي هسته اي است. دقت كنيد نيروي كولني بسيار ناچيز است و نميتواند به تنهايي هسته را متلاشي كند و نيروي گرانش ذرات نيز بسيار كم ميباشد و توانايي در تعادل نگه داشتن هسته را ندارد,در واقع اين نيروي هسته اي است كه اتم را در تعادل نگه داشته و از واپاشيده شدن نوكلئون ها جلوگيري ميكند. براي توضيح اين نيرو بايد گفت اگر فاصله بين پروتون و نوترون از 5 ضربدر 10 به توان منفي 15 متر(5فمتو متر) بيشتر شود نيروي هسته اي وجود ندارد , بر عكس اگر اين فاصله از مقدار ياد شده كمتر شود نيروي هسته اي بيشترميشود بدين طريق هسته از متلاشي شدن نجات ميابد.

    سال 1905 در يك آپارتمان كوچك در شماره 49 خيابان كرامر گاسه در برلين (منزل مسكوني اينشتين)اتفاق بزرگي افتاد ; كسي چه ميدانست با كشف فرمول معروف نسبيت خاص E=mc2 ميتوان جان هزاران نفر را در هيروشيما و ناكازاكي گرفت و يا اينكه براي ميليون ها نفر در سرار جهان برق و انرژي توليد كرد ؟!

    فرمول E=mc2 به ما ميگويد كه اندازه انرژي آزاد شده برابر است با تغييرات جرم جسم تبديل شده در مجذور سرعت نور. به اين معني كه اگر ما جسمي به جرم مثلا يك كيلوگرم را با سرعتي نزديك به سرعت نور به حركت درآوريم انرژي معادل 9ضربدر10به توان 16 ژول خواهيم داشت كه رقم بسيار وحشتناكي است ولي واقعيت اين است كه چنين چيزي غير ممكن است !!! چرا ؟

    چون بر اساس همان فرمول نسبيت حركت با سرعت نور براي اجسام غير ممكن است. براي درك بهتر موضوع فرمول را به شكل ديگري مينويسيم : m=E/C2 اگر C2 ثابت فرض شود به روشني پيداست كه انرژي و جرم نسبت مستقيم با يكديگر دارند ,حال اگر ما بخواهيم جسمي به جرم m را با سرعت نور © به حركت درآوريم طبيعتا بايد به آن انرژي بدهيم و از آنجا كه m و E با يكديگر نسبت مستقيم دارند پس هر چه انرژي بيشتر شود m نيز بزرگتر ميشود ودر واقع قسمت اعظم انرژي صرف ازدياد جرم ميشود تا سرعت دادن به جسم . پس تقريبا به بي نهايت انرژي نياز داريم واين همان چيزي است كه حركت با سرعت نور را براي اجسام غير ممكن ميكند.

    قبل از اينكه توضيحات بيشتري داده شود لازم است كمي هم در مورد راههاي آزاد كردن انرژي هسته اي بگوئيم.

    به طور كلي انرژي موجود در هسته به دو روش آزاد ميشود :

    1 - روش شكافت هسته اي كه در آن يك اتم سنگين مانند اورانيوم تبديل به دو اتم سبكتر ميشود . ويا به عبارتي ديگر وقتي كه هسته اي سنگين به دو يا چند هسته با جرم متوسط تجزيه ميشود ميگويند شكافت هسته اي رخ داده است و وقتي هسته اي با عدد اتمي زياد شكافته شود , مقداري از جرم آن ناپديد وبه انرژي تبديل ميشود(طبق قانون نسبيت).

    2 - روش همجوشي (گداخت هسته اي) ; كه در آن دو اتم سبك مانند هيد روژن تبديل به يك اتم سنگين مانند هليم ميشود. درست همانند اتفاقي كه در حال حاضر در خورشيد مي افتد, كه در هر دو حالت انرژي قابل توجهي آزاد مي شود.

    در حال حاضر اكثر بمب هاي هسته اي ونيروگاههاي هسته اي بروش شكافت هسته عمل ميكنند .

    حال دوباره به توضيحات مربوط اتم بر ميگرديم . در اينجا لازم است نكاتي را در مورد پايداري و ناپايداري توضيخ دهيم...

    اگرما 13 پروتون را با 14 نوترون تركيب كنيم هسته اي خواهيم داشت كه اگر 13 الكترون در اطراف آن گردش كنند يك اتم آلومينيوم را ميسازند .حال اگر ميلياردها عدد از اين اتم ها را در كنار هم قرار دهيم آلومينيوم را مي سازيم(AL27) كه با آن انواع وسايل نظير قوطي ها و درب وپنجره ها و غيره... را ميتوان ساخت.

    حال اگر همين آلومينيوم را در شيشه اي قرار دهيم ! وچند ميليون سال به عقب برگرديم اين آلومينيوم هيچ تغييري نخواهد كرد ,پس آلومينيوم عنصري پايدار است . تا حدود يك قرن پيش تصور بر اين بودكه تمام عناصر پايدار هستند. مساله مهم ديگر اينكه بسياري از اتم ها در اشكال متفاوتي ديده مي شوند . براي مثال : مس دو شكل پايدار دارد , مس 63 ومس 65 كه به اين دو نوع ايزوتوپ گفته مي شود .هر دوي آنها 29 پروتون دارند اما چون در عدد اتمي 2 واحد فرق دارند به سادگي مي توان فهميد كه تعداد نوترون هاي اولي 34 وديگري 36 است وهر دوي آنها پايدار هستند.در حدود يك قرن پيش دانشمندان متوجه شدند گه همه عناصر ايزوتوپ هايي دارند كه راديواكتيو هستند.مثلا : هيدروژن را در نظر بگيريد , در مورد اين عنصر سه ايزوتوپ شناخته شده است.

    1 - هيدروژن معمولي يا نرمال (H1) در هسته اتم حود يك پروتون دارد وبدون هيچ نوتروني. البته واضح است چون نيازي نيست تا خاصيت چسبانندگي خود را نشان دهد چرا كه پروتون ديگري وجود ندارد.

    2 - هيدروژن دوتريم كه يك پروتون ويك نوترون دارد و در طبيعت بسيار نادر است. اگرچه عمل آن بسيار شبيه هيدروژن نوع اول است براي مثال ميتوان از آن آب ساخت اما ميزان بالاي آن سمي است.

    هر دو ايزوتوپ ياد شده پايدار هستند اما ايزوتوپ ديگري از هيدروژن وجود دارد كه ناپايدار است !

    3 - ايزوتوپ سوم هيدروژن (تريتيوم) كه شامل دو نوترون و يك پروتون است. همان طور كه قبلا گفته شد اين نوع هيدروژن ناپايدار است . يعني اگر مجددا ظرفي برداريم واين بار درون آن را با اين نوع از هيدروژن پر كنيم و يك ميليون سال به عقب برگرديم متوجه ميشويم كه ديگر هيدروژني نداريم و همه آن به هليم 3 تبديل شده است (2 پروتون و يك نوترون) واين ها همه توضيحاتي ساده در مورد پايداري و ناپايداري بود.

    در يك پاراگراف ساده ميتوان گفت كه هر چه هسته اتم سنگين تر شود تعداد ايزوتوپ ها بيشتر ميشود و هر چه تعداد ايزوتوپ ها بيشتر شود امكان بوجود آمدن هسته هاي ناپايدار نيز بيشتر خواهد شد و در نتيجه احتمال وجود نوع راديواكتيو نيز بيشتر ميشود.

    در طبيعت عناصر خاصي را ميتوان يافت كه همه ايزوتوپ هايشان راديو اكتيو باشند.براي مثال دو عنصر سنگين طبيعت كه در بمب ها ونيروگاههاي هسته اي از آنها استفاده مي شود را نام ميبريم : اورانيوم و پلوتونيوم.

    اورانيوم به طور طبيعي فلزي است سخت,سنگين,نقره اي و راديواكتيو,با عدد اتمي 92.سالهاي زيادي از آن به عنوان رنگ دهنده لعاب سفال يا تهيه رنگهاي اوليه در عكاسي استفاده ميشد و خاصيت راديواكتيو آن تا سال 1866 ناشناخته ماند و قابليت آن براي استفاده به عنوان منبع انرژي تا اواسط قرن بيستم مخفي بود.

    خصوصيات فيزيكي اورانيوم

    اورانيوم طبيعي (كه بشكل اكسيد اورانيوم است) شامل3/99% از ايزوتوپ اورانيوم 238 و7/0% اورانيوم 235است. كه نوع 235 آن قابل شكافت است و مناسب براي بمب ها ونيروگاههاي هسته اي است. اين عنصر از نظر فراواني در ميان عناصر طبيعي پوسته در رده 48 قراردارد. از نظر تراكم و چگالي بايد گفت 6/1 مرتبه متراكم تر از سرب است.وهمين تراكم باعث سنگين تر شدن آن مي شود.براي مثال اگر يك گالن شير وزني حدود 4 كيلوگرم داشته باشد ,يك گالن اورانيوم 75 كيلوگرم وزن دارد!!!

    انواع اورانيوم

    اورانيوم با غناي پايين كه ميزان اورانيوم 235 آن كمتر از 25% ولي بيشتر از7/0% است كه سوخت بيشتر راكتورهاي تجاري بين 3 تا 5 درصد اورانيوم 235 است.

    اورانيوم با غناي بالا كه در اينجا بيشتر از 25% وحتي در مواردي آن را تا98% نيز غني ميكنند و مناسب براي كاربردهاي نظامي وساخت بمب هاي هسته اي است.

    و اما منظور از غني سازي اورانيوم چيست؟

    بطوربسيار خلاصه غني سازي عبارت است از انجام عملي كه بواسطه آن مقدار اورانيوم 235 بيشتر شود و مقدار اورانيوم 238 كمتر. كه پس از جمع آوري اورانيوم 238 ,آن را زباله اتمي مي نامند.

    غني سازي اورانيوم به روشهاي مختلفي انجام مي شود كه چند مورد از آن را خدمت شما يادآور مي شويم: 1-استفاده از اصل انتشار گازها 2-استفاده از روش فيلترينگ 3-استفاده از ميدانهاي مغناطيسي 4- استفاده از دستگاه سانتريفوژ كه در حال حاضر روش چهارم متداولترين,باصرفه ترين و مطمئن ترين روش به شمار ميآيد.

    در اواخر سال 1938 هان,مايتنر و اشتراسمن به اكتشافي دست يافتند كه دنيا را تحت تاثير قرار داد ,آنها متوجه شدند كه ميتوان كاري كرد كه هسته هاي اورانيوم 235 شكسته شوند.

    فرض كنيد كه نوتروني در اطراف يك هسته اورانيوم 235 آزادانه در حال حركت است,اين هسته تمايل زيادي دارد كه نوترون كند را به درون خود بكشاند وآن راجذب كند.هسته اورانيوم پس از گير اندازي اين نوترون,ديگر هسته اي پايدار نيست وناگهان از هم شكافته مي شود اين هسته در طي فرآيند شكافت به دو يا چند هسته با جرم كوچكتر ,يعني به صورت هسته هاي عناصر نزديك به مركز جدول تناوبي تجزيه مي شود.به طور كلي در فرآيند شكافت اگر يك نوترون به هسته اصابت كند به طور ميانگين 5/?نوترون در اثر شكافت آزاد مي شود حال اگر ما تعداد نوترون هاي آزاد شده را 3 عدد فرض كنيم و مدت زمان لازم براي تحقق هر شكافت 01/0 ثانيه باشدمقدار اورانيوم مصرف شده در طي زمان يك ثانيه در حدود 10به توان 23 كيلوگرم خواهد بود !!! واضح است كه واكنش زنجيره اي شكافت ميتواند مقادير قابل توجهي از اورانيوم را در مدت زمان ناچيزي به انرزي تبديل كند.با توجه به توضيحات داده شده به وضوح مشخص است كه ما نيازي به توليد مستمر نوترون نداريم بلكه با اصابت اولين نوترون به هسته وآزاد شدن نوترون هاي ناشي از فرآيند شكافت ما ميتوانيم نوترون مورد نياز خود را بدست آوريم كه مسلما اين تعداد نوترون بسيار بيشتر از نياز ما خواهد بود. لازم به ذكر است كه به حداقل مقدار اورانيومي كه براي فرآيند شكافت لازم است جرم بحراني يا مقدار بحراني مي گويند واز به هم پيوستن دو يا چند جرم بحراني يك ابر جرم بحراني حاصل مي شود.

    حال اگر بخواهيم واكنش زنجيره اي ادامه پيدا كند,حفظ يك اندازه بحراني براي ماده اوليه اورانيوم ضرورت دارد .در صورتي كه مقدار اورانيوم را خيلي كمتر از جرم بحراني بگيريم ,بيشتر نوترون هاي توليدي فرار خواهند كرد زيرا اين فرار به عواملي چون : شكل فيزيكي اورانيوم و جرم آن وابسته است و در نتيجه واكنش متوقف مي شود. از سوي ديگر اگر مقدار اورانيوم را فوق العاده زياد بگيريم مثلا به اندازه يك ابر جرم بحراني,تمام نوترون هاي توليدي در واكنش هاي بعدي شركت خواهند كرد وانرژي آزاد شده در يك فاصله زماني كوتاه آنچنان زياد خواهد شد كه نتيجه اي جز انفجار نخواهد داشت!! بين اين دو حالت يك خط فاصل وجود دارد:اگر بزرگي كره اورانيومي شكل را درست برابر اندازه بحراني بگيريم آنگاه از هر شكافت فقط يك نوترون براي شركت در شكافت بعدي باقي مي ماند در اين صورت واكنش با آهنگ ثابتي ادامه مي يابد. از خاصيت حالت سوم براي توجيح عملكرد نيروگاههاي هسته اي استفاده مي كنند. حال اگر به اندازه كافي اورانيوم 235 در اختيار داشته باشيم به آساني مي توانيم يك بمب ساده بسازيم !!!!! به اين شكل كه دو نيم كره از اورانيوم 235 را كه هر كدام به اندازه جرم بحراني است در دو انتهاي يك استوانه قرار ميدهيم و اين دو قطعه را بوسيله ساز وكاري كه خود طراحي كرده ايم ناگهان به يكديگر متصل مي كنيم كه در اين حالت ابر جرم بحراني تشكيل مي شود,حال اگر توسط دستگاه نوترون ساز نوتروني به هسته نزديك كنيم وقوع انفجار حتمي است!!

    در عمل براي آنكه انفجاري بزرگ و موثر حاصل شود ريزه كاري هاي زيادي را بايد رعايت كرد.

    در هر حال براي توضيح عملكرد نيروگاههاي هسته اي لازم به ذكر است راكتورهاي هسته اي را چنان طراحي ميكنند كه در آنها واكنش شكافت در شرايطي نزديك به حالت بحراني تحقق يابد. قلب راكتور اساسا متشكل است از سوخت(در اين مورد اورانيوم 235) كه در استوانه هاي مخصوص در بسته اي جا سازي شده اند. اين استوانه ها در ماده اي كه كند كننده ناميده مي شوند غوطه ورشده اند.كند كننده به منظور كند سازي و باز تاباندن نوترونهايي كه در واكنش شكافت توليد ميشوند مورد استفاده قرار ميگيرد كه متداول ترين آنها عبارتند از:آب,آب سنگين وكربن. كه در اينجااگر در آب معمولي (H2O) به جاي ايزوتوپ هيدروژن معمولي از ايزوتوپ هيدروژن دوتريم استفاده شود آب سنگين بدست مي آيد.

    سرعت واكنش را نيز مي توان به كمك چند ميله كنترل كرد كه اين ميله ها در قلب راكتور قرار مي گيرند. اين ميله ها معمولا از ماده اي مانند كادميوم كه نوترون ها را بخوبي جذب ميكند ساخته مي شوند. براي آنكه آهنگ واكنش افزايش يابد ميله ها را تا حدودي از قلب راكتور بيرون مي آورند ,براي كاستن از سرعت واكنش و يا متوقف ساختن آن,ميله ها را بيشتر در قلب راكتور فرو ميبرند.در نهايت واكنش صورت گرفته در راكتور به صورت گرماي بسيار زيادي ظاهر مي شود بنابراين طبيعي است كه راكتور ها همانند يك كوره عمل كنند وسوختش به جاي گاز,نفت ويا ذغال سنگ ,اورانيوم 235 باشد. گرماي توليد شده را به كمك جريان سيالي كه از قلب راكتور ميگذرد به محفظه مبادله كننده گرما كه در آن آب وجود دارد منتقل ميكنند و درآنجا آب داخل مبادله كننده را تبخير ميكنند ;بخار متراكم شده پس از به گردش درآوردن توربين ژنراتورهاي مولد برق,مجددا به داخل محفظه مبادله كننده باز ميگردد.البته سيال گرم شده چون از قلب راكتور مي گذرد و درآنجا در معرض تابش پرتوهاي راديواكتيو قرار ميگيرد مستلزم مراقبت هاي ويژه است.

    و اما نكاتي جالب در مورد بمب هاي هسته اي

    منطقه انفجار بمب هاي هسته اي به پنج قسمت تقسيم ميشود:1- منطقه تبخير 2- منطقه تخريب كلي 3- منطقه آسيب شديد گرمايي 4- منطقه آسيب شديد انفجاري 5- منطقه آسيب شديد باد وآتش . كه در منطقه تبخير درجه حرارتي معادل سيصد ميليون درجه سانتيگراد !!! بوجود مي آيد و اگر هر چيزي از فلز گرفته تا انسان وحيوان در اين درجه حرارت قرار بگير آتش نميگيرد بلكه بخار مي شود!!!!

    اثرات زيانبار اين انفجار حتي تا شعاع پنجاه كيلومتري وجود دارد و موج انفجار آن كه حامل انرژي زيادي است مي تواند ميليون ها دلار از تجهيزات الكترونيكي پيشرفته نظير: ماهواره ها و يا سيستم هاي مخابراتي را به مشتي آهن پاره تبديل كند و همه آنها را از كار بيندازد.

    اينها همه اثرات ظاهري بمب هاي هسته اي بود پس از انفجار تا سال هاي طولاني تشعشعات زيانبار راديواكتيو مانع ادامه حيات موجودات زنده در محل هاي نزديك به انفجار مي شود.

    راديو اكتيو از سه پرتو آلفا,بتا و گاما تشكيل شده است كه نوع گاماي آن از همه خطرناك تر است و با توجه به فركانس بسيار بالا ,جرم و انرژي بالايي كه دارد اگر به بدن انسان برخورد كند از ساختار سلولي آن عبور كرده و در مسير حركت خود باعث تخريب ماده دزوكسي ريبو نوكلوئيك اسيد يا همان DNA و سرانجام زمينه را براي پيدايش انواع سرطان ها,سندرم ها ونقايص غير قابل درمان ديگر فراهم مي كند وحتي اين نقايص به نسلهاي آينده نيز منتقل خواهد شد.

    و اما كاربرد تشعشعات راديواكتيو چيست؟

    بسياري از محصولات توليدي واكنش شكافت هسته اي شديدا ناپايدارند و در نتيجه ,قلب راكتور محتوي مقادير زيادي نوترون پر انرژي ,پرتوهاي گاما,ذرات بتا وهمچنين ذرات ديگر است. هر جسمي كه در راكتور گذاشته شود ,تحت بمباران اين همه تابشهاي متنوع قرار ميگيرد. يكي از موارد استعمال تابش راكتور توليد پلوتونيوم 239 است .اين ايزوتوپ كه نيمه عمري در حدود24000سال دارد به مقدار كمي در زمين يافت مي شود . پلوتونيوم 239 از لحاظ قابليت شكافت خاصيتي مشابه اورانيوم دارد.براي توليد پلوتونيوم239,ابتدا اورانيوم 238 را در قلب راكتور قرار مي دهند كه در نتيجه واكنش هايي كه صورت مي گيرد ,اورانيوم239 بوجود مي آيد.اورانيوم 239 ايزوتوپي ناپايدار است كه با نيمه عمري در حدود 24 دقيقه,از طريق گسيل ذره بتا ,به نپتونيوم 239 تبديل مي شود . نپتونيوم 239 نيز با نيمه عمر 2/4 روز و گسيل ذره بتا واپاشيده و به محصول نهايي يعني پلوتونيوم 239 تبديل مي شود.در اين حالت پلوتونيوم239 همچنان با مقاديري اورانيوم 238 آميخته است اما اين آميزه چون از دو عنصر مختلف تشكيل شده است ,بروش شيميايي قابل جدا سازي است.امروزه با استفاده از تابش راكتور صدها ايزوتوپ مفيد ميتوان توليد كردكه بسياري از اين ايزوتوپ هاي مصنوعي را در پزشكي بكار ميبريم. در پايان بايد بگوئيم اثرات زيانبار انفجار هاي اتمي و تشعشعات ناشي از آن باعث آلودگي آبهاي زير زميني ,زمين هاي كشاورزي و حتي محصولات كشاورزي مي شود ولي با همه اين مضرات اورانيوم عنصري است ارزشمند;زيرا در كنار همه سواستفاده ها مي توان از آن به نحوي احسن و مطابق با معيارهاي بشر دوستانه استفاده نمود. فراموش نكنيد از اورانيوم و پلوتونيوم مي توان استفاده هاي صلح آميز نيز داشت چرا كه از انرژي يك كيلوگرم اورانيوم 235 مي توان چهل هزار كيلو وات ساعت ! الكتريسيته توليد كرد كه معادل مصرف ده تن ذغال سنگ يا 50000گالن نفت است!!!!!!!!

  2. #2
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    مقاله هاى اينشتين و فيزيك نوين از ميان مجموعه مقاله هاى اينشتين مقاله اى كه او در سال 1905 عرضه كرد، اثر مهمى در پيشرفت علم داشته است. در آن مقاله پديده فوتوالكتريك را شرح مى دهد و با استفاده از نظريه كوانتوم پلانك نظريه فوتونى نور را بيان مى كند. بر طبق اين نظريه نور مانند انرژى هاى ديگر حالت كوانتومى دارد. كوانتوم نور را كه فوتون مى ناميم مقدار مشخص انرژى است كه اندازه آن، E، از رابطهhv = Eبه دست مى آيد كه v بسامد موج و h ثابت پلانك است.

    بنابر اين نظريه هر چه بسامد نور بيشتر يا طول موج آن كمتر باشد، انرژى فوتون بيشتر است. چنانچه اين فوتون ها در مسير حركت خود به الكترون هايى برخورد كنند، جذب الكترون مى شوند و انرژى الكترون را بالا مى برند و در نتيجه الكترون مى تواند از ميدانى كه در آن قرار گرفته است، آزاد و خارج شود. اينشتين به مناسبت توضيح پديده فوتوالكتريك جايزه نوبل سال 1921 فيزيك را دريافت كرد. نظريه فوتونى او نه فقط نور بلكه سراسر طيف موج هاى الكترومغناطيسى از موج هاى گاما تا موج هاى بسيار بلند را دربرمى گيرد و توضيح مى دهد.

    موضوع دومين مقاله اينشتين حركت براونى بود. در سال 1827 رابرت براون (1858- 1773) گياه شناس و پزشك انگليسى حركت مداوم معلق دو مايع را مشاهده كرد و متوجه شد كه اين ذره ها با قطرى حدود يك ميكرون پيوسته به اين سو و آن سو حركت مى كنند. اينشتين همين آزمايش را در مقاله اى با استفاده از نظريه جنبشى ذره ها تعبير و تفسير كرد و از روى آن عدد آوودگادرو را به دست آورد.

    اينشتين نظريه نسبيت خاص را در مقاله سوم معرفى كرد. در اين مقاله بود كه مفاهيم اساسى طبيعت موجى فضا، حجم، زمان و حركت به طور كامل تغيير كرد. اينشتين ضمن مطالعه هاى خود توانست مسئله سرعت نور را كه از مدت ها پيش تعجب دانشمندان را برانگيخته بود، حل وفصل كند. او نظريه خود را براساس دو اصل زير قرار داد:

    1- سرعت نور در جهان ثابت است

    2- قانون هاى طبيعت براى ناظرين مختلف كه يكنواخت حركت مى كنند يكسان است.

    اينشتين نشان داد كه اگر ثابت نبودن سرعت نور را بپذيريم، نتيجه هاى شگفت انگيزى به بار مى آيد. براى مثل هر چه سرعت حركت جسمى بيش تر شود، طول آن كوتاه تر و جرمش بيشتر مى شود. نتيجه ديگر آنكه به زمان مطلق و فضاى مطلق به شكلى كه پيشينيان تصور مى كردند نمى توان قائل شد و زمان و فضا را جدا و مستقل از يكديگر نمى توان در نظر گرفت. دنياى مادى يك فضا و زمان چهاربعدى است. جرم يك جسم نيز ثابت نيست و با تغيير سرعت تغيير مى كند به طورى كه مى توان جرم را نوعى انرژى متراكم در نظر گرفت و يا انرژى را جرم پراكنده دانست. اينشتين با بيان نظريه نسبيت خاص، قانون بقاى ماده لاوازيه و اصل بقاى انرژى ماير را به اصل بقاى مجموع ماده و انرژى درآورد و رابطه معروف جرم و انرژى را به دست آورد. اينشتين در سال 1916 نظريه نسبيت عام را تنظيم و اعلام كرد. در اين نظريه نه تنها حركت با سرعت ثابت و مسير مستقيم، بلكه هر نوع حركتى در نظر گرفته شده بود. در بسيارى موارد دليل آنكه سرعت و مسير حركت هر متحركى تغيير مى كند، وجود نيروى جاذبه است. بنابراين در نظريه نسبيت عام بايد نيروى جاذبه در نظر گرفته شود. اينشتين يك رشته معادله تنظيم كرد كه نشان مى داد اگر در هيچ جا ماند و نيروى جاذبه وجود نداشته باشد، جسم متحرك مسير مستقيمى را طى مى كند و اگر ماده وجود داشته باشد فضاى پيرامون جسم متحرك دگرگون شده، جسم مسير منحنى را طى مى كند. نظريه نسبيت عام نشان مى دهد كه اين منحنى ها چگونه بايد باشند و اين به طور كامل با آن چه در نظريه جاذبه نيوتن پيش بينى شده بود، تطبيق نمى كرد. براى مثال بر طبق نظريه اينشتين مسير نور تحت تاثير ميدان جاذبه قوى تغيير مى كند. در صورتى كه از قانون هاى نيوتن چنين نتيجه اى به دست نمى آمد. كسوف سال 1919 نظريه اينشتين را ثابت كرد. در سال 1969 دو سفينه پژوهشى كه به سمت مريخ فرستاده شدند، اثر خورشيد بر مسير موج هاى راديويى را مورد مطالعه و مشاهده قرار دادند.

    ايران و سال جهانى فيزيك

    سال جهانى فيزيك فرصت مناسبى است تا در ايران به نقد آموزش علوم و پژوهش هاى علمى بپردازيم و مشخص كنيم آيا راه و روشى را كه از زمان بنيانگذارى دارالفنون تاكنون برگزيده ايم درست و بجا بوده و توانسته است بسترى مناسب براى فعاليت هاى علمى و پژوهشى به وجود آورد. آيا با همه سرمايه گذارى هاى مادى و معنوى توانسته ايم جامعه ايرانى را به حالتى برسانيم كه به علم باور داشته باشند، علمى بينديشند، بتوانند توليدكننده علم باشند و بدانند كه براى رساندن جامعه به خودكفايى و توسعه پايدار، كارى مداوم و جدى و همگانى لازم است.

    گرچه نمى توان منكر تلاش هاى صميمانه افراد و سازمان هاى مؤثر در آموزش علوم جديد در ايران شد ليكن در اين مدت نتوانسته ايم به سطح مورد انتظار جامعه برسيم، ولى توانسته ايم پايه هاى اوليه را طرح ريزى و شروع به سازندگى كنيم. اين كار از يك سو از دبستان ها و از سوى ديگر از دانشگاه ها آغاز شده است. در دبستان ها فعاليت آموزش علوم با طرح جديدى كه هم اكنون در مدرسه ها اجرا مى شود، آغاز شد. كودكان را به مشاهده مستقيم طبيعت و كارگروهى برانگيخته اند و به جاى آنكه فقط دانستنى ها را به ذهن آنها منتقل كنند، معلمان، كودكان را به مشاهده طبيعت، جمع آورى اطلاعات، طبقه بندى و حتى طراحى آزمايش، فرضيه سازى و نتيجه گيرى تشويق مى كنند و همه اينها مقدمه اى است براى آنكه كودكان با روش علمى آشنا شوند.

    در دانشگاه ها تحقيقات سازمان يافته آغاز شده است. پروژه هاى تحقيقاتى گرچه در ابتدا حالت تقليدى و كتابخانه اى داشت، كم كم به مرحله علمى نزديك مى شود و اميد است، تحقيقات به معناى واقعى در كشور آموزش داده شود و جريان يابد.

    اكنون مشكل بزرگ در برنامه دبيرستان ها وجود دارد. دانش آموزان به جاى آموختن روش حل مسئله به حفظ كردن پاسخ ها مى پردازند تا آنها را تحويل آزمون ها و كنكور دانشگاه دهند و به مدرك هاى بالاتر دست يابند. با توجه به آنكه مخاطبان سال جهانى فيزيك، دانش آموزان نيز هستند مى توان اميدوار بود كه با نيروهاى مخلصى كه در ميان معلمان وجود دارد و نيز تشويق هايى كه از طرف سازمان ها صورت مى گيرد و كارگاه هاى علمى كه از سوى كشورهاى پيشرفته صنعتى در كشور تشكيل و اجرا مى شود، به هدف هاى مورد نظر دست يافت و روش علمى را در فعاليت هاى آموزشى و پژوهشى ياد گرفت و به كار برد.

    نويسنده اين نوشته تاكنون شاهد همايش ها و جلسه هاى متعددى بوده كه از سوى دبيران فيزيك و انجمن هاى علمى تشكيل شده و دانش آموزان و دبيران به تهيه و عرضه مقاله هاى علمى و توليد نرم افزارهاى كامپيوترى و نيز ابزارهاى آزمايشگاهى و كارگاهى دست زده اند. همه اين كارها به علاقه مندان اين كشور اميد مى دهد كه جامعه علمى ما در حال بيدار شدن است. بيدارگران پرتلاش و پر اميد به بيدار كردن خواب آلودگان مشغولند. گرچه برخى از سازمان ها و افراد هنوز در كار متوقف كردن جريان علمى در كشور هستند، اما در جامعه نه تنها زنگ ها بلكه ناقوس هاى بيدارى به صدا درآمده و هيچ فردى را فرصت و مهلت خوابيدن نمى دهد.

    روزى كه اينشتين رمق فكر كردن نداشت

    اينشتين در نوجوانى علاقه چندانى به تحصيل نداشت. پدرش از خواندن گزارش هايى كه آموزگاران درباره پسرش مى فرستادند، رنج مى برد. گزارش ها حاكى از آن بودند كه آلبرت شاگردى كندذهن، غيرمعاشرتى و گوشه گير است. در مدرسه او را «باباى كندذهنى» لقب داده بودند. او در 15 سالگى ترك تحصيل كرد، در حالى كه بعدها به خاطر تحقيقاتش جايزه نوبل گرفت!

    شايد شما نيز اين جملات را خوانده يا شنيده باشيد و شايد اين پرسش نيز ذهن شما را به خود مشغول كرده باشد كه چگونه ممكن است شاگردى كه از تحصيل و مدرسه فرارى بوده است، برنده جايزه نوبل و به عقيده برخى از دانشمندان، بزرگ ترين دانشمندى شود كه تاكنون چشم به جهان گشوده است؟

    با مطالعه دقيق تر زندگى اين شاگرد ديروز، پاسخ مناسبى براى اين پرسش پيدا خواهيم كرد. آلبرت بچه آرامى بود و والدينش فكر مى كردند كه كندذهن است. او خيلى دير زبان باز كرد، اما وقتى به حرف آمد، مثل بچه هاى ديگر «من من» نمى كرد و كلمه ها را در ذهنش مى ساخت. وقتى به سن چهار سالگى پاگذاشت، با بيلچه سر خواهر كوچكش را شكست و با اين كار ثابت كرد كه اگر بخواهد، مى تواند بچه ناآرامى باشد!

    پدر و مادر آلبرت به بچه هاى كوچك خود استقلال مى دادند. آنان آلبرت چهارساله را تشويق مى كردند كه راهش را در خيابان هاى حومه مونيخ پيدا كند. در پنج سالگى او را به مدرسه كاتوليك ها فرستادند. آن مدرسه با شيوه اى قديمى اداره مى شد. آموزش از طريق تكرار بود. همه چيز با نظمى خشك تحميل مى شد و هيچ اشتباهى بى تنبيه نمى ماند و آلبرت از هر چيزى كه حالت زور و اجبار و جنبه اطاعت مطلق داشته باشد، متنفر بود. اغلب كسانى كه درباره تنفر اينشتين از مدرسه، معلم و تحصيل نوشته اند، به نوع مدرسه، شيوه تدريس معلم و مطالبى كه اين دانش آموز بايد فرا مى گرفت، كمتر اشاره كرده اند. بازخوانى يك واقعه مهم در زندگى اينشتين ما را با مدرسه محل تحصيل او آشناتر مى كند: روزى آلبرت مريض بود و در خانه استراحت مى كرد. پدرش به او قطب نماى كوچكى داد تا سرگرم باشد. اينشتين شيفته قطب نما شد. او قطب نما را به هر طرف كه مى چرخاند، عقربه جهت شمال را نشان مى داد. آلبرت كوچولو به جاى اين كه مثل ساير بچه ها آن را بشكند و يا خراب كند، ساعت ها و روزها و هفته ها و ماه ها به نيروى اسرارآميزى فكر مى كرد كه باعث حركت عقربه قطب نما مى شود. عموى آلبرت به او گفت كه در فضا نيروى ناديدنى (مغناطيس) وجود دارد كه عقربه را جابه جا مى كند. اين كشف تاثير عميق و ماندگارى بر او گذاشت. در آن زمان، اين پرسش براى آلبرت مطرح شد كه چرا در مدرسه، چيز جالب و هيجان انگيزى مثل قطب نما به دانش آموزان نشان نمى دهند؟! از آن به بعد، تصميم گرفت خودش چيزها را بررسى كند و به مطالعه آزاد مشغول شود. اينشتين ده ساله بود كه در دبيرستان «لويت پولت» ثبت نام كرد. در آن موقع، علاقه بسيارى به رياضى پيدا كرده بود. اين علاقه را عمويش اكوب و يك دانشجوى جوان پزشكى به نام ماكس تالمود در وى ايجاد كرده بودند. تالمود هر پنجشنبه به خانه آنان مى آمد و درباره آخرين موضوعات علمى با آلبرت حرف مى زد. عمويش نيز او را با جبر آشنا كرده بود. اينشتين در دوازده سالگى از تالمود كتابى درباره هندسه هديه گرفت. او بعدها آن كتاب را مهم ترين عامل دانشمند شدن خود عنوان كرد. با اين كه آلبرت در خانه چنين علاقه اى به رياضيات و فيزيك نشان مى داد، در دبيرستان چندان درخششى نداشت. او در نظام خشك و كسل كننده دبيرستان، علاقه اش را به علوم از دست مى داد و نمراتش كمتر و كمتر مى شدند. بيشتر معلمانش معتقد بودند كه او وقتش را تلف مى كند و چيزى ياد نمى گيرد. هرچند اينشتين به قصد اين درس مى خواند كه معلم شود نه فيزيكدان، اما از معلمان خود دل خوشى نداشت و از زورگويى آنان و حفظ كردن درس هاى دبيرستان، دل پرخونى داشت. از اين رو، خود را به مريضى زد و با اين حيله، مدتى از دبيرستان فرار كرد! چون معلم ها نيز از او دل خوشى نداشتند، شرايط را براى اخراج او از مدرسه فراهم كردند. اينشتين بعدها در اين باره گفت: «فشارى كه براى از بر كردن مطالب امتحانى بر من وارد مى آمد، چنان بود كه بعد از گذراندن هر امتحان تا يك سال تمام، رمق فكر كردن به ساده ترين مسئله علمى را نداشتم!» اينشتين بعدها مجبور شد در دبيرستان ديگرى ديپلم خود را بگيرد و سرانجام با هزار بدبختى گواهينامه معلمى را دريافت كند. بعد از آن، مدتى معلم فيزيك در يك مدرسه فنى شد، اما چون روش هاى خشك تدريس را نمى پسنديد، پيشنهادهايى در مورد تدريس به رئيس مدرسه داد كه پذيرفته نشدند و به اين ترتيب بهانه اخراج خود را فراهم كرد.اينشتين پس از اين واقعه، زندگى دانشجويى را برگزيد و پس از فارغ التحصيلى، در اداره ثبت اختراعات به كار مشغول شد. او از كار كردن در اين اداره راضى بود. عيب دستگاه هاى تازه اختراع شده را پيدا مى كرد و در ساعت ادارى، وقت كافى داشت تا به فيزيك فكر كند. در همين اداره بود كه مقاله هاى متعددى نوشت و در مجلات معتبر منتشر كرد. جالب اين كه دانشمند بزرگ كه با فرضيات خود انقلابى در جهان دانش به پا كرد، در شرايطى كار مى كرد كه براى هر دانشمند ديگرى غيرممكن بود! او نه با فيزيكدان حرفه اى تماس داشت و نه به كتاب ها و مجلات علمى مورد نياز دسترسى داشت. در فيزيك فقط به خود متكى بود و كس ديگرى را نداشت كه به او تكيه كند! اكتشافات او چنان خلاف عرف بودند كه به نظر فيزيكدانان حرفه اى، با شغلى كه او به عنوان يك كارمند جزء در دفتر ثبت اختراعات داشت، سازگار نبودند.

  3. #3
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    مكانيزم حركت
    مكانيزم حركت

    (
    زندگي قانون مند كائنات از حركت بر روي زمين تا انبساط عالم بر پايه ي تغيير درجه حرارت )


    عامل اصلي حركت و زندگي اختلاف درجه حرارت مي باشد
    نظري كلي به حركت درطبيعت نشان مي دهد:
    1- چنانكه معلوم است گرماآب دريارا تبخير مي كند. سپس بخارآب سبب ريزش برف وباران مي شود يعني اختلاف درجه حرارت آب را ازگوديهاي زمين به مرتفعات ميرساند. ازآنجا جريان ديگري به سوي دريارفته درمسيرخود اشياء رابه حركت درمي آورد كه بشرهم ازنيروي محركه آن استفاده مي كند.
    2- جريانهاي آب گرم مانندگلف استريم كه ازمنطقه حاره به طرف قطب جاري است وباعث تغييرآب وهواي نواحي وسيعي مي شود همچنين جريانهاي آب سرد كه دركف اقيانوسها ازحدود قطب به نواحي گرم درحركتند به سبب تغييرحجم آب به علت اختلاف درجه حرارت به وجود مي آيند.
    3- هواي سرد و سنگين هواي گرم و سبك را به بالاتر رانده جاي آن رامي گيرند. اين حركت ايجاد باد و طوفان مي كند كه آن به نوبه خود امواج دريا ، شنهاي صحرا، ابرها ودرختان وگياهان را به جنبش درمي آورد.
    بنابراين سبب پيدايش حركات طبيعي مذكور تغييرحجم هوابه علت اختلاف درجه گرماست.
    4- خردشدن سنگها به سبب يخبندان وزلزله كه سبب اصلي آن نفوذ ورسيدن آب به نزديكي قسمت ها و شكافهاي مربوط به هسته مذاب زمين وتبخير ناگهاني آن است يابه علل معروف ديگر مظهرديگري ازحركت است كه به سبب تغييرحجم دراثر اختلاف درجه حرارت است.
    5- پرتاب شدن گلوله اسلحه گرم وحركت ماشين بخار وموتور ديزل وجت وغيرآنها همگي به سبب زيادشدن حجم ماده به علت بالارفتن درجه گرماست.
    علت ازديادحجم مواد منفجره و بنزين و غيره را واكنشهاي شيميايي و اكسيداسيون دانسته اند ولي به اين حقيقت توجه شود كه گازكربنيك بخارآب و ساير گازهاي حاصله ازاحتراق و انفجار را با پايين آوردن درجه حرارت ميتوان به مايع وجامد تبديل كرد وبدين وسيله حجم آنها را به حجم ماده منفجره يا محترقه به اضافه حجم اكسيژن مايع رساند معلوم ميشود كه عامل و علت ازدياد حجم حرارت است.




    6-حركات منظومه شمسي نيز ناشي از تغيير حجم ماده به علت اختلاف درجه حرارت است:
    يك نيمكره زمين پيوسته رو به خورشيد است .تابش آفتاب آب اقيانوس ها وهواي جو را گرم كرده سبب انبساط آنها مي شود در نتيجه به سطح آب وجو مي افزايد . با لعكس در نيمكره ديگر سطح آب و هوا به منتهاي تراكم رسيده و سطح آنها از همه جا پائين تر است زيرا در حدود 12 ساعت در سايه ي زمين قرار داشته اند. با لعكس در قاچي كه نزديك غروب است مواد سيال سطح زمين حداكثر انبساط را يافته وسطح آنها بالاتر از قسمت هاي ديگر است .
    نيروي جاذبه ي زمين و حركت وضعي و كرويت آن ايجاب مي كند كه سطح آبها و جو تقريبا كروي و به اصطلاح مستوي باشد به اين جهت هميشه مقداري از آب وهواي قاچ مغرب به نواحي ديگر زمين رفته و قاچ مشرق قدري آب و هواي اضافي به دست مي آورد (سبب تمايل به غربي _شرقي بودن جهت عمومي بادها و جريانهاي دريائي يعني موافقت با حركت وضعي زمين نيز همين امر است . زيرا آب و هواي قاچ مغرب به علت ازدياد حجم اكثرا به سمت نيمكره تاريك كه حجم مواد سيال آن به سرعت رو به كاهش مي رود جريان مي يابند . بديهي است كه فشار ناشي از اين حركت خاصه هنگام برخورد به كوهها و سواحل نيز در حركت وضعي زمين موثر است .اين تمايل و اصولا انقباض وانبساط آبها در طي شبانه روز در جزر و مد دريا ها عامل اساسي است ظاهرا" آب در وسط اقيانوس ها چندان نوسان ندارد بلكه برخورد اثر جزر و مد به سواحل آن را شديد و با اختلاف زياد نمايش مي دهد.) در نتيجه جرم قاچ شرقي زياد تر شده و بيشتر جذب خورشيد مي گردد . در حاليكه در قاچ غربي به علت كاهش جرم كمتر تحت تاثير نيروي جاذبه خورشيد است و نسبت به ساير قاچها از خورشيد دور مي شود .(چنان كه قطعه چوب عكس جاذبه زمين از كف آب بالا مي آيد.) به اين ترتيب حركت وضعي زمين از تغيير حجم و تغيير جرم (سنگين وسبك شدن ) قاچهاي آن به علت اختلاف درجه حرارت بوجود مي آيد .
    چون در سطح ماه سياله نيست يا مقدارآن ناچيز است اين كره حركت وضعي ديگري غير از حركت تابعه انتقالي ندارد . يعني يا به علت آنكه نيمكره مقابل زمين جرم بيشتري دارد يا صرفا به سبب آنكه به زمين نزديكتر است يا به هر دو جهت بيشتر از نيم كره ي ديگر جذب شده هميشه مقابل زمين قرار مي گيرد همين امر سبب حركت وضعي ماه مي شود كه با حركت انتقالي آن مساوي است .
    از اينجا دانسته مي شود در سطح كرات منظومه ي شمسي كه حركت وضعي دارند ماده يا مواد سيال موجود است .
    حركت وضعي زمين خود به خود به علت چرخش نخستين و به سبب عدم برخورد به مانع دانسته اند ولي اگر كمي دقت كنيم معلوم خواهد شد درآن قاچ زمين كه مقابل خورشيد وهنگام ظهر است نيروي جاذبه ي خورشيد بيشتر اثر دارد زيرا به آن نزديك تر است واين وضع چون دائمي است سبب كاهش سرعت گردش زمين شده مانند ترمز خفيف در مدتي طولاني كه موجب باز ايستادن آن از دوران مي گردد.
    بنابراين زمين داراي نيروي محركه اي است كه بر تمايل به سكون فزوني داشته وباعث حركت وضعي است.
    پيدايش ودوام حركت انتقالي اين گونه است :چون قسمت هاي مختلفه كره زمين داراي جرم هاي متفاوت اند اثر جاذبه ي خورشيد روي آن قسمت ها يكسان نخواهد بود .به طور كلي از دو نيمكره ي زمين آنكه تقريبا بين ساعت 21 و 9 صبح قرار دارد سنگين تر از ديگري است (جرم بيشتري دارد ) لذا بيشتر جذب خورشيد شده برنيمكره ي ديگر فشار مي آورد عكس العمل نيمكره سبك در برابر اين فشار باعث پرت شدن زمين در جهتي تقريبا عمود برجهت جاذبه وموافق جهت نيروي گريز از مركز مي شود يعني نتيجه مي شود كه اثر نيروي جاذبه بر قسمتهاي مختلفه كره در جهتي تقريبا موافق جهت نيروي گريز از مركز است وچون وضع زمين در قبال خورشيد از جهت اختلاف جرم دو نيمكره و قسمتهاي مختلفه ي آنها تقريبا ثابت است جهت حركت به مدار تبديل مي شود .ضمنا هر وقت زمين بخواهد قدري از خورشيد دور شود بواسطه ي كاهش اثر نور وحرارت جرم دو نيمكره كمتر شده سبب كند شدن حركت در مسير و نتيجتا كاستن نيروي گريز از مركز و نزديكي مجدد زمين به خورشيد مي شود . عكس اين وضع بر سرعت حركت انتقالي افزوده ونيروي گريز از مركز را بيشتر مي كند در نتيجه زمين در مدار معين ( بيضي كه داراي حضيض و اوج هست ) به دور خورشيد ميگردد.
    شكل خاص مدار زمين هم به علت تغيير نسبت جرم دو نيمكره در طي سال است . حركت انتقالي ماه به دور زمين نيزبه سبب اختلاف اثر جاذبه زمين بر قسمتهاي مختلفه آن كره است . به طور كلي نيمكره نزديك به زمين بيش از نيمكره ي ديگر جذب مي شود . نتيجتا نيروها باعث پرت شدن ماه تقريبا در جهت نيروي گريز از مركز خواهد شد يعني ماه مي خواهد از زمين دور شود ولي چون وضع آن در قبال زمين ثابت است و هميشه همان نقطه ي آن در امتداد خط مركز ماه _مركز زمين قرار دارد جهت حركت به مقداري تبديل ميشود كه مقدار فاصله با خورشيد و در نتيجه اثر جاذبه ي زمين وخورشيد شكل خاص آن را تعين مي كند .
    به نظر نويسنده حركات وضعي و انتقالي( خود به خود) در هر جايي ناشي از همين قانون كلي فيزيكي است .
    پيدايش فصول چهار گانه و ثابت ماندن محور زمين با تمايل معين نسبت به سطح مدار آن بدين سبب است : آب در چهار سانتي گراد به حداكثر سنگيني مي رسد و در طرفين اين درجه سبك مي شود. در نقطه ي اعتدال ربيعي مقدار يخ ها .آبهاي سنگين( در حدود 4 درجه ) وآب هاي گرم در دو نيمكره ي شمالي وجنوبي به حال تعادل است سپس يخهاي قطب شمال تدريجا ذوب شده بر مقدار آب سنگين ( نزديك به 4 سانتي گراد) مي افزايد بدين سبب نيمكره ي شمالي و تمايل آن به خورشيد به حد اكثر مي رسد از آن پس به وسيله ي فزوني آب هاي گرم (زائد بر 4 سانتي گراد) در اين نيمكره تمايل آن به خورشيد كاهش مي يابد تا آنكه مجددا در نقطه ي اعتدال تعادل برقرار ميشود.
    در پاييز وزمستان همين وضع براي نيمكره ي جنوبي پيش مي آيد يعني در اول دي ماه قطب جنوب به جانب خورشيد سبب سنگيني آن به حداكثر مي رسد همچنين فزوني بارندگي در زمستان وبهار بر خشكي هاي نيمكره ي شمالي در ازدياد جرم اين نيمكره و تمايل به خورشيد مؤثر است.
    در حالي كه در تابستان و پائيز به علت تبخير.جرم خشكي ها ودرياچه ها ورود هاي نيمكره ي شمالي تقليل مي يابد.بدين ترتيب تمايل محورزمين هميشه نسبت به سطح مدارآن تقريبا" ثابت مي ماند. ظاهرا"تعادل نيروي جاذبه درفضاي بزرگ (كهكشانها) درايجاداين ميل ثابت اثرناچيزي دارد . درپيدايش و ثابت ماندن قطبين زمين چنانكه يكي از دانشمندان كشف نموده است كمي تغييردرجه حرارت درشبانه روز نواحي قطبي موثر بوده است.ولي وضع نسبتا"ثابت فعلي قطبين به اين جهت است كه قوه جاذبه خورشيد در نواحي استوايي زمين كه داراي جرم بيشتري است تاثيرزياد تري دارد. لذا ناحيه استوايي تقريبا"(با انحرافي كه فوقا"علت آن ذكرشد)درسطح مدارزمين قرارگرفته است.
    دورشدن كهكشان ها واجرام آسماني ازهم ديگرنيز به عقيده وي انبساط جهان بزرك به علت تشعشع وگرما است.واساسا" اگرتشعشع وگرما نبود كليه اجرام درمركزجهان بدون هيچ گونه حركتي روي هم متراكم مي شدند.
    به اين ترتيب ثابت مي شود كه تغييردرجه گرما عامل اصلي كليه حركات غيرحياتي است.به نظر وي قانون انبساط به سبب گرما و انقباظ دراثرسرما كلي و بلا استثناء است .

  4. #4
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    انواع مكانيك در فيزيك (كلاسيك-نوين-لاگرانژي) مكانيك كلاسيك يكي از قديميترين و آشناترين شاخه‌هاي فيزيك است. اين شاخه با اجسام در حال سكون و حركت ، و شرايط سكون و حركت آنها تحت تاثير نيروهاي داخلي و خارجي ، سرو‌ كار دارد. قوانين مكانيك به تمام گستره اجسام ، اعم از ميكروسكوپي يا ماكروسكوپي، از قبيل الكترونها در اتمها و سيارات در فضا يا حتي به كهكشانها در بخش‌هاي دور دست جهان اعمال مي‌شود.
    سينماتيك حركت:
    سينماتيك به توصيف هندسي محض حركت ( يا مسيرهاي) اجسام ، بدون توجه به نيروهايي كه اين حركت را ايجاد كرده‌اند ، مي‌پردازد. در اين بررسي عاملين حركت (نيروهاي وارد بر جسم) مد نظر نيست و با مفاهيم مكان ، سرعت ، شتاب ، زمان و روابط بين آنها سروكار دارد. در اين علم ابتدا اجسام را بصورت ذره نقطه‌اي بررسي نموده و سپس با مطالعه حركت جسم صلب حركت واقعي اجسام دنبال مي‌شود.





    حركت اجسام به دو صورت مورد بررسي است:



    • سينماتيك انتقالي:
      در اين نوع حركت پارامترهاي سيستم به صورت خطي هستند و مختصات فضايي سيستم‌ها فقط انتقال مي‌يابد. از اينرو حركت انتقالي مجموعه مورد بررسي قرار مي‌گيرد. كميت مورد بحث در سينماتيك انتقالي شامل جابه‌جايي ، سرعت خطي ، شتاب خطي ، اندازه حركت خطي و...مي‌باشد.


    • سينماتيك دوراني:
      در اين نوع حركت برخلاف حركت انتقالي پارامتر اصلي حركت تغيير زاويه مي‌باشد. به عبارتي از تغيير جهت حركت ، سرعت و شتاب زاويه‌اي حاصل مي‌شود. و مختصات فضايي سيستم ‌ها فقط دوران مي‌يابند. جابه‌جايي زاويه‌اي ، سرعت زاويه‌اي ، شتاب زاويه‌اي و اندازه حركت زاويه‌اي از جمله كميات مورد بحث در اين حركت مي‌باشند.

    ديناميك حركت :


    ديناميك به نيروهايي كه موجب تغيير حركت يا خواص ديگر ، از قبيل شكل و اندازه اجسام مي‌شوند مي‌پردازد. اين بخش ما را با مفاهيم نيرو و جرم و قوانين حاكم بر حركت اجسام هدايت مي‌كند. يك مورد خاص در ديناميك ايستاشناسي است كه با اجسامي كه تحت تاثير نيروهاي خارجي در حال سكون هستند سروكار دارد.


    پايه گذاران مكانيك كلاسيك:



    • با اين كه شروع مكانيك از كميت سرچشمه مي‌گيرد ، در زمان ارسطو فرايند فكري مربوط به آن گسترش سريعي پيدا كرد. اما از قرن هفدهم به بعد بود كه مكانيك توسط گاليله ، هويگنس و اسحاق نيوتن بدرستي پايه‌گذاري شد. آنها نشان دادند كه اجسام طبق قواعدي حركت مي‌كنند ، و اين قواعد به شكل قوانين حركت بيان شدند. مكانيك كلاسيك يا نيوتني عمدتا با مطالعه پيامدهاي قوانين حركت سروكار دارد.


    • قوانين سه گانه اسحاق نيوتن راه مستقيم و سادهاي به موضوع مكانيك كلاسيك مي‌گشايد.اين قوانين عبارتند از:
      • قانون اول نيوتن:
        هر جسمي به حالت سكون يا حركت يكنواخت خود در روي يك خط مستقيم ادامه مي‌دهد مگر اينكه يك نيروي خارجي خالص به آن داده شود و آن حالت را تغيير دهد.
      • قانون دوم نيوتن:
        آهنگ تغيير تكانه خطي يك جسم با برآيند نيروهاي وارد بر آن متناسب بوده و در جهت آن قرار دارد.
      • قانون سوم نيوتن:
        اين قانون كه به قانون عمل و عكس‌العمل معروف است ، اينگونه بيان مي‌شود. هر عملي را عكس العملي است ، مساوي با آن و در خلاف جهت آن.


    • فرمولبندي لاگرانژي مكانيك كلاسيك:

    در برسي حركت اجسام به كمك قوانين نيوتون اجسام به صورت ذره‌اي در نظر گرفته مي‌شود. بنابراين ، بررسي حركات سيستم هاي چند ذره‌اي ، اجسام صلب ، دستگاه‌هاي با جرم متغير ، حركات جفت شده و ... به كمك قوانين اسحاق نيوتن به سختي صورت مي‌گيرد. لاگرانژ و هاميلتون دو روش مستقلي را براي حل اين مشكل پيشنهاد كردند. در اين روشها براي هر سيستم يك لاگرانژين (هاميلتونين) تعريف كرده ، سپس به كمك معادلات اويلر-لاگرانژ (هاميلتون-ژاكوپي) حركات محتمل سيستمها مورد بررسي قرار مي‌گيرد.


    موارد شكست فرمولبندي اسحاق نيوتن :



    • تا آغاز قرن حاضر . قوانين اسحاق نيوتن بر تمام وضعيتهاي شناخته شده كاملا قابل اعمال بودند. مشكل هنگامي بروز كرد كه اين فرمولبندي به چند وضعيت معين زير اعمال شدند:


    • اجسام بسيار سريع:
      اجسامي كه با سرعت نزديك به سرعت نور حركت مي‌كنند.


    • اجسام با ابعاد ميكروسكوپي مانند الكترونها در اتم‌ها.

    شكست مكانيك كلاسيك در اين وضعيتها ، نتيجه نارسايي مفاهيم كلاسيكي فضا و زمان است.


    مكمل مكانيك كلاسيك:


    مشكلات موجود در سر راه مكانيك كلاسيك منجر به پيدايش دو نظريه زير شد:


    • فرمولبندي نظريه نسبيت خاص براي اجسام متحرك با سرعت زياد


    • فرمولبندي مكانيك كوانتومي براي اجسام با ابعاد ميكروسكوپي

    مكانيك لاگرانژي
    اطلاعات اوليه

    كاربرد مستقيم قوانين حركت نيوتن براي حركت سيستم‌هاي ساده راحت و آسان است. اما در صورتي كه تعداد ذرات سيستم بيشتر شود، در اين صورت استفاده از قوانين نيوتن كار دشواري خواهد بود. در اين حالت از يك روش عمومي ، پيچيده و بسيار دقيق كه به همت رياضيدان فرانسوي ژوزف لويي لاگرانژ ابداع شده است، استفاده مي‌شود. به اين ترتيب مي‌توان معادلات حركت براي تمام سيستمهاي ديناميكي را پيدا كرد. اين روش چون نسبت به معادلات نيوتن حالت كلي تري دارد، لذا در مورد حالتهاي ساده كه با معادلات حركت نيوتن به راحتي حل مي‌شود، نيز قابل اعمال است.
    مختصات تعميم يافته

    موقعيت يك ذره در فضا را مي‌توان با سه سيستم مختصات مشخص كرد. اين سيستمها عبارتند از سيستمهاي كارتزين ، كروي و استوانه‌اي ، يا در حقيقت هر سه پارامتر مناسب ديگري كه انتخاب شده باشند. اگر ذره مجبور به حركت در يك صفحه يا سطح ثابت باشد فقط به دو مختصه براي مشخص كردن موقغيت ذره نياز است، در حاليكه اگر ذره روي يك خط مستقيم يا يك منحني ثابت حركت كند، ذكر يك مختصه كافي خواهد بود. اما در مورد يك سيستم متشكل از N ذره ، براي تشخيص كامل موقعيت همزمان تمام ذرات به 3N مختصه نياز خواهيم داشت.

    اگر محدوديتهاي بر سيستم اعمال شده باشد، تعداد مختصات لازم براي مشخص كردن پيكربندي كمتر از 3N خواهد بود. به عنوان مثال ، اگر سيستم مورد نظر يك جسم صلب باشد، براي مشخص كردن پيكربندي آن فقط به موقعيت مكاني يك نقطه مرجع مناسب از جسم (مثلا مركز جرم) و جهت يابي آن نقطه در فضا احتياج داريم. بنابراين در حالت كلي براي مشخص كردن پيكربندي يك سيستم خاص ، احتياج به تعداد حداقل معين n مختصه نياز است. اين مختصات را مختصات تعميم يافته مي‌گويند.
    نيروي تعميم يافته

    در سيستم مختصات تعميم يافته ، به جاي نيروهايي كه در مكانيك كلاسيك نيوتني معمول است، مرتبط با هر مختصه نيرويي تعريف مي‌شود كه به نام نيروي تعميم يافته معروف است. اين كميت كه با استفاده از تعريف كار محاسبه مي‌شود، به اين صورت است كه حاصل ضرب آن در مختصه تعميم يافته داراي ابعاد كار است. بنابراين اگر مختصه تعميم يافته داراي بعد فاصله باشد در اين صورت اين كميت از جنس نيرو خواهد بود. در صورتيكه مختصه تعميم يافته از نوع زاويه باشد، در اين صورت اين كميت داراي بعد گشتاور خواهد بود. يعني متناسب با نوع مختصه تصميم يافته مي‌تواند از جنس نيرو و يا گشتاور نيرو باشد.
    معادلات لاگرانژ

    براي بررسي حركت يك سيستم در مكانيك لاگرانژي انرژي جبنشي و انرژي پتانسيل سيستم را تعيين مي‌كنند. اين كار به اين صورت مي‌گيرد كه در مكانيك لاگرانژين در مورد هر سيستم دو كميت جديد به نام‌هاي لاگرانژين و هاميلتونين تعريف مي‌شود. لاگرانژين برابر تفاضل انرژي پتانسيل از انرژي جنبشي است. در صورتي كه هاميلتون برابر با مجموع انرژي جنبشي و انرژي پتانسيل سيستم است. در واقع مي‌توان گفت كه كار اصلي تعيين و محاسبه صحيح انرژي جنبشي و پتانسيل است.

    سپس اين مقادير در معادله‌اي كه به معادله لاگرانژ حركت معروف است قرار داده مي‌شود. معادله لاگرانژ ، معادله‌اي است كه بر حسب مشتقات تابع لاگرانژي نسبت به مختصات تعميم يافته و نيز مشتق زماني مشتقات تابع لاگرانژي نسبت به سرعتهاي تعميم يافته نوشته شده است. به عبارت ديگر اگر تابع لاگرانژي را با L نشان دهيم و مختصات تعميم يافته را با qk و سرعت‌هاي تعميم يافته را با qk (كه نقطه بيانگر مشتق زماني مختصه تعميم يافته qk است) نشان دهيم، معادلات لاگرانژ به صورت زير خواهد بود:

    در صورتي كه نيروهاي موجود در سيستم همگي پايستار نباشند، به عنوان مثال يك نيروي غير پايستار مانند اصطكاك وجود داشته باشد در اين صورت در طرف دوم معادلات لاگرانژ عبارت Qk كه بيانگر نيروي تعميم يافته غير پايستار است، نيز اضافه مي‌شود.

    معادلات لاگرانژ براي تمام مختصات يكسان هستند. اين معادلات ، روش يك نواختي براي بدست آوردن معادلات ديفرانسيل حركت يك سيستم در انواع سيستم‌هاي ارائه خواهند داد.
    اصل تغييرات هاميلتون

    روش ديگر براي استنتاج معادلات لاگرانژ اصل تغييرات هاميلتوني است. در اين حالت همانگونه كه قبلا نيز اشاره شد در مورد هر سيستم كميتي به نام تابع هاميلتوني تعريف مي‌شود كه برابر با مجموع انرژي جنبشي و انرژي پتانسيل سيستم است. اين اصل در سال 1834 توسط رياضيدان اپرلندي ويليام .ر. هاميلتون ارائه شد.

    در اين روش فرض مي‌شود كه يك تابع پتانسيل وجود دارد، يعني سيستم تحت بررسي يك سيستم پاياست. ولي اگر تعدادي از نيروها نيز غير پايستار باشد مانند مورد معادلات لاگرانژ مي‌توان سهم اين نيرو ها را نيز بطور جداگانه منظور كرد. يعني در اين حالت تابع هاميلتون برابر با مجموع انرژي جنبشي و كار انجام شده توسط تمام نيروها اعم از نيروهاي پايستار و غير پايستار است.
    معادلات هاميلتون

    معدلات هاميلتون از 2n معادله ديفرانسيل درجه اول تشكيل شده است. اين معادلات بر حسب اندازه حركت تعميم يافته و مشتقات آن نوشته مي‌شود. اندازه حركت تعميم يافته به صورت مشتقات تابع لاگرانژي نسبيت به سرعت تعميم يافته تعريف مي‌شود. بنابراين اين معادلات زير خواهند بود.


    در عبارت فوق qk بيانگر سرعت تعميم يافته است و علامت نقطه در بالاي Pk (اندازه حركت تعميم يافته) بيانگر مشتق زماني است. اگر معادلات هاميلتون را با معادلات لاگرانژي مقيسه كنيم ملاحظه مي‌شود كه تعداد اولين معادلات زياد است. يعني اگر سيستم V با N مختصه يافته مشخص شود، در اين صورت معادلات هاميلتون شامل 2n معادله ديفرانسيل درجه اول هستند، در صورتيكه معادلات لاگرانژ از n معادله درجه دوم تشكيل شده است. بنابراين كار كردن با معادلات هاميلتون راحتتر است. معمولا در مكانيك كوانتومي‌ و مكانيك كاري از معادلات هاميلتون استفاده مي‌شود

  5. #5
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    انقلاب بزرگ كوپرنيكي نيكلا كوپرنيك (1543-1473) اخترشناس، رياضيدان، كشيك، حقوقدان و اقتصادان با استعدادي بود كه در نزد مردم بسيار محترم بود. اصليت وي لهستاني بود و براي ادامه تحصيل به ايتاليا رفت. كوپرنيك نخستين كسي بود كه در دوران رنسانس، انقلاب بزرگي را در زمينه اخترشناسي برپا مي كند.كوپرنيك به مسئله حركت دوراني افلاطون در مورد اجرام آسماني بسيار علاقه مند بود و در اين زمينه تلاش هاي بسيار انجام داد. كوپرنيك معتقد بود كه حركت اجرام آسماني مانند ستاره ها،سيارات و ماه يك حركت دوراني(دايره اي) و يا تركيبي از حركات دوراني است. زيرا در حركات دوراني، جرم در يك دوره مشخص و ثابت به حالت و وضعيت قبلي خود برمي گردد. كوپرنيك با مشاهدات و تحقيقات گسترده و محاسبات دقيق به اين نتيجه رسيد كه اگر حركت سيارات به حركت دوره اي زمين در ارتباط باشد، و حركت دوره اي سيارات را بر اساس گردش آن ها به دور خورشيد محاسبه كنيم به اين نتيجه مي رسيم كه علاوه بر نظم و ارتباط ميان آن ها(منظور حركت دوراني زمين و خورشيد مركزي) و ترتيب حاكم بر مدار هاي سيارات، حركت دوراني اين اجرام با هم در ارتباط مي باشند. به طوري كه تغيير در هر يك از اين مدار ها باعث در هم فرو ريختن اجرام و در نتيجه منظومه مي شود.

    سرانجام كوپرنيك منظومه خود را تدوين كرد كه منظومه وي با منظومه زمين مركزي بطليموس كه مورد قبول عامه مردم (از جمله كليسا) آن دوره بود، مغايرت داشت. وي در منظومه خود خورشيد را مركز قرار داد كه زمين و ديگر سيارات به دور آن در حال حركت هستند. نيكلا منظومه خود را بر اساس چند فرض بنيان نهاد:

    1) مركزيِ هندسي ودقيق براي مدار اجرم آسماني وجود ندارد.

    2) خورشيد در مركز قرار دارد و زمين و ديگر سيارات به دور آن حركت مي كنند.

    3) زمين ديگر مركز جهان نيست. زمين علاوه بر حركت گردشي به دور خورشيد، به دور خود نيز مي چرخد.

    4) حركت خورشيد در آسمان بر اساس حركت دوره اي زمين مي باشد.

    5) حركت ظاهري اجرام آسماني در آسمان تنها بر اساس حركت خود آن ها نيست، بلكه اين حركت ها با حركت دوره اي زمين نيز در ارتباط مي باشند.

    كوپرنيك نظر داد كه گردش زمين به دور خود يك شبانه روز به طول مي انجامد.

    كوپرنيك تلاش مي كرد تا نظريه خود را از طريق رياضيات اثبات كند. وي با محاسبات خود به اين نتيجه رسيد كه هرچه قدر از سيارات دور به خورشيد نزديك شويم، بر سرعت گردش آن ها افزوده مي شود. زحل كه دورترين سياره آن زمان بود، يك دور يكنواخت خود را به مدت 29.5 سال و سپس مشتري اين دوره را در 11.8 سال مي پيمايد. بعد از مشتري نوبت به مريخ مي رسد كه اين دوره را در مدت 687 روز و زهره 224 روز و عطارد 88 روز سپري مي كنند. البته اين مقادير را كوپرنيك محاسبه كرده است و اختلاف اين مقادير با مقادير امروزي ناچيز است.

    اين محاسبات بخشي از اثبات تئوري كوپرنيك با استفاده از هندسه بود.

    مزيت تئوري كوپرنيك آن بود كه وي با استناد به نظريه خورشيد مركزي به نتايجي دست يافت كه برخي از اين نتايج در نظريه بطليموسي امكان پذير نبود.

    مهمترين اين نتايج عبارتند از:

    الف) محاسبه اندازه مدار سيارات كه به دور خورشيد مي گردند.

    ب) محاسبه دوره تناوب گردش سيارات به دور خورشيد.

    ج) بدست آوردن سرعت نسبي حركت دوراني سيارت.

    د) مشخص كردن حركت زاويه اي سيارات و موضع آن ها در آسمان. كه اين نتيجه در هر دو تئوري كوپرنيك و بطليموس وجود داشت.

    بر اين اساس بود كه كوپرنيك به اين نتيجه رسيد كه ميان مدار هاي سيارات و جايگاه آن ها ارتباطي وجود دارد؛ طبق گفته خود ((هرگونه تغيير مكاني در هر قسمت از آن باعث به هم خوردن قسمت هاي ديگر و همه جهان مي شود)).كوپرنيك مدعي بود كه برتري نظريه او در زيبايي و سادگي آن است. وي در اين رابطه در كتاب خود، ""درباره گردش افلاك آسماني"" مي گويد((در ميانه همه خورشيد بدون حركت مي پايد. به راستي، چه كسي در اين معبد عظيم و زيبا، منبع نور را در جايي جز آنجا كه بتواند همه قسمت هاي ديگر را بيفروزد و روشنايي بخشد، قرار مي دهد؟ پس در اساس اين برگزيدگي، تقارن قابل ستايش در جهان و هماهنگي بارزي در حركت و اندازه كرات مي يابيم، آن چنان كه به هيچ وجه ديگري نمي توانست باشد)).

    تئوري كوپرنيك بنا به دلايلي به زودي مورد قبول عامه مردم قرار نگرفت. بيش از يك قرن طول كشيد تا نظريه خورشيدمركزي ميان اخترشناسان مورد پذيرش قرارگيرد.

    مهمترين دلايلي كه عليه اين نظريه مطرح شده بود:

    1) منظومه كوپرنيكي بيشتر جنبه رياضي، سادگي و زيبايي داشت وبا مشاهدات نجومي آن زمان مطابقت نداشت و به همين دليل مورد پذيرش عام قرار نگرفت.

    2) يكي از ضعف هايي كه كوپرنيك در اثبات نظريه خود داشت آن بود كه او نمي توانست با استفاده از نظريه هاي پيشين، نظريه خود را اثبات كند.

    3) يكي از دلايلي كه هميشه بر ضد نظريه خورشيدمركزي مطرح بود آنست كه اگر زمين در حال حركت مي بود، بايستي به كلي منهدم شود. زيرا اگر زمين حركت كند، آنگاه هوا، پرندگان و قطرات باراني كه به زمين مي بارند، جا مي ماندند. يكي از مثل هايي كه مخالفين به گاليله مي گفتند آن بود كه اگر زمين در حال حركت باشد، توپي كه از بالاي برج پيزا پرتاب مي شد بايد به عقب (جهت خلاف گردش زمين) جا بماند. اما كوپرنيك مي پنداشت كه هوا به همراه زمين به در حال حركت است. و از طرفي وي در نظر داشت كه اگر چنين مي بود پس چرا ديگر اجرام آسماني كه در حال حركتند، منهدم و نابود نمي شوند. 4) الگوي خورشيد مركزي كوپرنيك با عقايد و اصول ارسطو مغايرت داشت. و از طرفي چون در آن زمان كليسا طرفدار اصول ارسطو بود، به همين دليل نظر همه مسيحيان بر ضد كوپرنيك بود. آنان به آيات انجيل استناد مي كردند و مي گفتند كه معمار و طرح خلقت جهان بر اساس منظومه و تئوري بطليموس است. به همين دليل سازمان تفتيش عقيده، كتاب كوپرنيك را كه مخالف با كتاب مقدس بود، ممنوع اعلام كرد. اگر چه نظريه خورشيد مركزي كوپرنيك با نظريه زمين مركزي بطليموس از نظر علميِ مشاهده نجومي سازگار بود اما از نظر فلسفي مغايرت داشت. چون كوپرنيك چارچوب مرجع خود را از زمين به خورشيد منتقل كرده بود. و اين انتقال چارچوب از نظر فيزيك سينماتيكي امروزي كاملا صحيح مي باشد.

  6. #6
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    پراش صوتي بازتابش ، شكست و پراش فيزيك امواج صوتي عينا مانند بازتاب ، شكست و پراش نور صورت ميگيرد. زيرا آثار امواج نوري از بسياري جهات شباهت به آثار امواج صوتي دارند و تنها فرق موجود اين است كه طول موج فيزيك امواج نوراني نسبت به طول موج فيزيك امواج صوتي بسيار كوچك ميباشد. ولي قوانين هندسي آنها كاملا با هم شباهت دارد.

    وقتي كه بين منبع صوت و گوش مانعي قرار دهيم بر حسب بزرگي و كوچكي مانع نسبت به طول موج ، ممكن است آثار مختلف پيدا شود. اگر فيزيك امواج صوتي به جدار محكمي كه در آن سوراخي تعبيه شده است برخورد كنند، قسمتي از فيزيك امواج كه به سطح ديواره برخورد ميكنند منعكس ميگردند و قسمت ديگر كه به لبه جداره و يا به لبه سوراخ برخورد ميكنند ممكن است پراشيده شوند.

    مشاهده پديده تفرق در زندگي روزمره

    پديده تفرق فيزيك امواج صوتي در مشاهدات روزانه ما زياد است. مثلا وقتي اشخاص در مقابل دهنه بوقي شكل بلندگو واقع ميشوند، آنهايي كه در وسط و در نزديكي محور قرار دارند، تمام صداها را ميشنوند، ولي آنهايي كه در اطراف محور و خارج از ميدان بوق شده‌اند فقط آن كلمات و با قسمتي از موزيك را ميشنوند كه با صداي بم ادا نشده باشد. همچنين وقتي دو نفر در اطاقي مكالمه ميكنند اگر در ديوار مشترك با اطاق مجاور ، سوراخ كوچكي باشد ممكن است صداي آنها را در اتاق مجاور تشخيص داد. در صورتيكه اگر درب همان دو اطاق باز باشد آنكه در همسايگي واقع است ممكن است درست صداي مكالمه در همان اطاق مجاور را بخوبي و مانند سابق نشنود.

    همينطور وقتي كه در سينما يا تئاتر پشت سر شخص چاق يا قد بلندي بنشينم ، به گونه‌اي كه مشاهده صحنه براي ما مقدور نباشد باز صداي آرتيستها را ميشنويم. فيزيك امواج صوتي كه به بدن آن شخص ميرسند قسمتي جذب شده و قسمتي منعكس ميگردند و قسمتي كه به حدود اطراف بدن او برخورد ميكنند، به واسطه پديده پراش در پشت سر او در هر نقطه كه گوش ما قرار گيرد قابل شنيدن ميباشند.

    يك آزمايش ساده

    قطعه‌اي از نمد را كه تقريبا به مساحت يك متر مربع باشد اختيار كنيد و در وسط آن سوراخي به قطر 15 سانتي متر ايجاد نمائيد. اگر يك فرفره آلماني (نوعي فرفره است كه در جدار آن چند سوراخ وجود دارد، وقتي كه ميچرخد، توليد صدا ميكند) را در فاصله 30 سانتي متري از سوراخ بچرخانيم در هر جايي كه در پشت نمد قرار گيريم صداي آن به آهستگي و به طور يكنواخت شنيده ميشود. و اگر خود را در مقابل سوراخ طوري قرار دهيم كه فرفره را با چشم خود ببينيم، صداي آن از وقتي كه خود را در جاي ديگر قرار دهيم بلندتر شنيده نميشود. تنها وقتي در ناحيه پشت قطعه نمد صداي قويتر شنيده ميشود كه نمد را از ميان برداريم و اين مطلب براي اين است كه در صورت اخير انرژي صوتي بيشتري در گوش ما داخل ميشود.

    اگر بجاي فرفره ، يك ساعت جيبي قرار دهيم (طول موج امواجي كه ساعتها توليد ميكنند از يك الي هشت سانتي متر تغيير ميكند) در اين حالت براي اينكه صداي تيك تيك آن را در پشت قطعه نمد بشنويم بايد خود را در روي محور قرار دهيم، به گونه‌اي كه ساعت از پشت نمد قابل رويت باشد. وقتي كه اين شرط حاصل شد‌، صداي آن عينا مانند وقتي شنيده ميشود كه نمد وجود نداشته باشد و چون در خارج محور واقع باشيم صداي ساعت تقريبا ديگر شنيده نميشود.

    شرايط پراش

    - فرض كنيد فيزيك امواج صوتي به سطح ديواري كه سوراخي در آن تعبيه شده است، برخورد ميكنند. امواج صوتي را با طول موج معيني در نظر ميگيريم. هرگاه طول موج نسبت به قطر سوراخ بزرگ باشد، چون طبقه متراكم (موج) به ديوار برسد، قسمت كوچكي از آن كه از سوراخ عبور ميكند خود مانند مركز صوت شد. و با آن طرف جدار طبقات كروي متراكم و منبسط ، پشت سر هم بمركز سوراخ درست ميشوند. نتيجه اينكه در پشت مانع در همه جا صدا وجود خواهد داشت.

    - برعكس اگر طول موج نسبت به قطر سوراخ كوچك باشد ، فيزيك امواج در حين عبور از سوراخ عينا به همان حالت باقي ميمانند. بديهي است كه در اين حالت قسمتي از موج تابشي كه با ديوار برخورد ميكند، خود به خود حذف ميگردد، و فقط قسمت مواجه با سوراخ از آن عبور مي كند.

    - بنابراين در حالت اول ، در هر نقطه از پشت جدار كه واقع باشيم، صداي منبع آهسته‌تر ولي به يك اندازه شنيده ميشود، در صورتي كه در حالت دوم ، فقط اگر در ناحيه مقابل سوراخ باشيم صداي منبع را به خوبي ميشنويم و در خارج آن صداي منبع مسموع نيست. علت اينكه در حالت اول صدا آهسته‌تر شنيده ميشود، آنست كه انرژي صوتي كه از سوراخ عبور ميكند روي سطح كروي توزيع شده و ضعيف ميگردد، در صورتي كه در حالت دوم تمام مقدار انرژي صوتي كه از سوراخ عبور ميكند روي فيزيك امواج با سطوح كوچك در پشت مانع متمركز ميباشند.

  7. #7
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    اتم(atom)
    همه ي مواد از اتم ها تشكيل شده اند و اتم ها، خود از ذرات زير اتمي مختلفي تشكيل شده اند كه عمده ترين آن ها سه ذره ي پروتون، نوترون و الكترون هستند، البته بايد يادآوري كرد كه هر كدام از اين سه ذره خود از ذرات ديگري نيز تشكيل شده اند.
    پروتون(p)
    جايگاه پروتون درون هسته ي اتم مي باشد، اين ذره كه داراي جرم نسبي 1+ مي باشد، توسط رادرفورد كشف شد و يك نيروي جاذبه بسيار قوي را با نوترون ها درون هسته ي هر اتم به وجود مي آورند.
    پروتون ها و نوترون ها نسبت به الكترون ها بسيار سنگين تر هستند و جرم حدودي آن ها برابر است با 1 a.m.u و براي نشان دادن عدد جرمي هر عنصر، مجموع تعداد نوترون ها و پروتون هاي آن را بررسي مي كنيم، چون الكترون جرم بسيار كم و كوچكي دارد.
    نوترون(n)
    جايگاه نوترون همانند پروتون درون هسته اتم مي باشد، نوترون ذره اي خنثي مي باشد و جرم زيادي دارد.
    تعداد نوترون ها در هسته ي اتم ها يا مساوي با تعداد پروتون هايش است يا اينكه از آن ها بيش تر مي باشد.
    نوترون توسط جيمز چادويك، يكي از شاگردان رادرفورد، كشف گرديد
    الكترون(e)
    ذره اي است با بار نسبي 1- كه در اطراف هسته ي اتم در فضاهايي به نام اوربيتال و به عبارتيدر مدارهايي مجاز به نام تراز انرژي در حال گردش مي باشد.
    در هر اتم خنثي تعداد پروتون ها با تعداد الكترون ها برابر است و بار موثري در هسته نداريم، اگر اتمي يك الكترون از دست بدهد به يون يك بار مثبت و اگر الكترون بگيرد به يون يك بارمنفي تبديل مي گردد.
    الكترون داراي دو وضعيت حركتي است:
    1- حركت اسپيني: گردش الكترون به دور خودش را حركت اسپيني يا زاويه اي الكترون مي گويند.
    2- حركت اوربيتالي: حركت الكترون در اطراف هسته ي اتم را حركت اوربيتالي مي نامند.
    و طبق مكانيك كوانتومي، مي دانيم كه الكترون ماهيت موجي، ذره اي دارد، يعني هم رفتار موجي دارد و هم به صورت يك ذره است.
    اوربيتال(orbital)
    فضايي سه بعدي در اطراف هسته اتم است كه احتمال حضور الكترون در آن جا بسيار زياد است.
    هر اوربيتال را با سه عدد كوانتومي n و L و ml مشخص مي كنند كه n عدد كوانتومي اصلي و مشخص كننده ي شماره لايه ها است و L عدد كوانتومي اوربيتالي كه مشخص كننده ي زيرلايه ها مي باشد و ml كه مشص كننده ي جهت گيري الكترون ها در اوربيتال مي باشد.
    عدد اتمي(Z)
    به تعداد پروتون هاي يك اتم عدد اتمي آن مي گويند.
    عدد اتمي عناصر در سمت چپ و پايين نماد شيميايي عناصر قرار مي گيرد و مشخص كننده ي اتم و نوع عنصر و ويژگي هاي آن مي باشد.
    عدد جرمي(A)
    به مجموع تعداد پروتون ها و نوترون هاي يك اتم عدد جرمي مي گويند.
    عدد جرمي در سمت چپ و بالاي نماد شيميايي عناصر قرار مي گيرد.
    ايزوتوپ
    به اتم هايي از يك عنصر كه عدد اتمي يكسان اما عدد جرمي متفاوتي دارند ايزوتوپ مي گويند يا به عبارت ديگر ايزوتوپ هاي يك عنصر عدد اتمي، تعداد پروتون و الكترون برابر دارند اما تعداد نوترون هاي آن ها متفاوت است.
    ايزوتون
    به اتم هايي از يك عنصر كه تعداد نوترون هاي برابري داشته باشند ايزوتون مي گويند.
    در ايزوتون ها، نوترون ها برابر، پروتون ها و الكترون ها متفاوت هستند.
    ايزوبار
    به اتم هايي از يك عنصر كه عدد جرمي برابري داشته باشند، ايزوبار مي گويند.
    در ايزوبارها، مجموع پروتونها و نوترون ها برابر و تعداد پروتون ها نابرابر هستند.

  8. #8
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    ظريه اي براي همه چيز
    A Theory for Everythings


    سالهاي متمادي است كه بحث تئوري همه چيز در فيزيك مطرح شده است. منظور از اين تئوري چيست؟ يك تئوري براي همه چيز به چه سئوالاتي بايد پاسخ دهد؟

    اجازه دهيد بحث را با سخنان هاوكينگ دنبال كنيم. هاوكينگ مي گويد.

    نظريه نسبيت عام اينشتين نظريه‌اي در باره جرم‌هاي آسماني بزرگ مثل ستارگان، سيارات و كهكشان‌هاست كه براي توضيح گرانش در اين سطوح بسيار خوب است.

    مكانيك كوانتومي نظريه‌اي است كه نيروهاي طبيعت را مانند پيام‌هايي مي‌داند كه بين فرميون‌ها (ذرات ماده) رد و بدل مي‌شوند. مكانيك كوانتومي در توضيح اشياء، در سطوح بسيار ريز خيلي موفق بوده بوده است.

    يك راه براي تركيب اين دو نظريه بزرگ قرن بيستم در يك نظريه واحد آن است كه گرانش را همانطور كه در مورد نيروهاي ديگر با موفقيت به آن عمل مي‌كنيم، مانند پيام ذرات در نظر بگيريم. يك راه ديگر بازنگري نظريه نسبيت عام اينشتين در پرتو نظريه عدم قطعيت است.

    با توجه به سخنان هاوكينگ دو نظريه مهم فيزيك و مكانيك كوانتوم، هريك به تنهايي خوب عمل مي كنند، اما با يكديگر ناسازگارند. بنابراين مسئله اصلي اين است كه راهي بيابيم تا اين دو نظريه را با يكديگر تركيب كنيم.

    براي تركيب اين دو نظريه تلاشهاي زيادي انجام شده است كه به چند مورد آنها اشاره مي كنيم:

    ابر گرانش

    همه ي مواد موجود در طبيعت از دو نوع ذره ي بنيادي به نام فرميون ها و بوزن ها تشكيل شده اند. تفاوت فرميون ها و بوزن ها در اسپين آنها مي باشد به طوري كه اسپن فرميون ها نيمه درست و اسپين بوزن ها عددي درست است. همه ي انواع ذرات دست كم از دو خاصيت ذاتي جرم و اسپين برخوردارند. جرم خاصيتي آشنا براي تمام مواد است كه به همان صورتي كه براي اجسام بزرگ مقياس در نظر گرفته مي شود ، در مورد كوچك ترين اجزا تشكيل دهنده ي ماده نيز كاربرد دارد . اسپين خاصيت ظريف تري است كه در اجسام بزرگ مقياس به سادگي قابل شناسايي نيست . اسپين ، در واقع ، خاصيتي است كه در قرن بيستم كشف شد تا رفتار بي هنجار الكترون ها را در ميدان مغناطيسي توضيح دهد.

    هر تقارني كه در جست و جوي ارتباط ميان فرميون ها و بوزون ها ، يعني ذراتي با اسپين هاي متفاوت ، باشد ابَرَتقارن ناميده مي شود. و اما ابَرَگرانش ، نظريه اي پيشنهادي در فيزيك بنيادي است كه ابرتقارن و گرانش را در هم مي آميزد. اولين نظريه ي ابرگرانش توسط سه فيزيكدان در سال 1976 فرمول بندي شد.

    ابر ريسمان

    در مطالعات و بررسي هاي مرسوم در فيزيك كوانتومي نسبيتي ، ذرات بنيادي را به صورت نقاط رياضي و بدون گستردگي فضايي در نظر ميگيريم. اين رهيافت موفقيت هاي بسيار چشمگيري داشته است ، ولي در انرژي هاي خيلي خيلي زياد يا فاصله هاي بسيار بسيار كوتاه كه بزرگي ميدان گرانشي با بزرگي نيروهاي هسته اي و الكترو مغناطيسي قابل مقايسه مي شود اين رهيافت با شكست رو به رو مي شود. در سال 1974 ژوئل شرك و جان شوارتز به منظور غلبه بر اين مشكل توصيف وحدت يافته اي از ذرات بنيادي را بر اساس منحني هاي يك بعدي بنيادي به نام ريسمان مطرح كردند . به نظر ميرسد كه نظريه هاي ريسمان از هر نوع ناسازگاري كه در تمام تلاش هاي قبلي دست يابي به نظريه اي وحدت يافته براي توصيف گرانش و ساير نيرو ها ايجاد مزاحمت كرده است ، مبراست . نظريه ابرريسمان كه در آنها از نوع خاصي تقارن به نام ابرتقارن ، بهره گيري مي شود ، بيشترين اميدواري را براي ارائه ي نتايج واقع بينانه پديد آورده اند.

    بوزون هگز

    در دهه هاي اخير فيزيكدانان يك مدل تحت عنوان مدل استاندارد را ارائه كردند تا يك چوب بست نظري براي فهم ذرات بنيادي و نيروهاي طبيعت فراهم آورند. مهمترين ذره در اين مدل، يك ذره ي فرضي موجود در همه ي ميدانهاي كوانتومي است كه نشان مي دهد ساير ذرات چگونه جرم به دست مي آورند. در واقع اين ميدان پاسخ مي دهد كه همه ي ذرات در حالت كلي چگونه جرم به دست مي آورند. اين ميدان، ميدان هگز Higgs field خوانده مي شود. نتيجه ي منطقي دوگانگي موجو - ذره اين است كه همه ي ميدانهاي كوانتومي داراي يك ذره ي بنيادي باشند كه با ميدان در آميخته است. اين ذره كه با همه ي ميدانها در آميخته و موجب كسب جرم توسط ساير ذرات مي شود، هگز بوزون Higgs boson ناميده مي شود.

    جمع بندي

    حال مطلب بالا را جمع بندي مي كنيم:

    يك - نسبيت عام بايد مكانيك كوانتوم تركيب شود تا مشكلات موجود در فيزيك نظري بر طرف گردد. طبق نسبيت عام مسير نور در ميدان گرانشي خميده است كه آن را تحت عنوان فضا - زمان مطرح مي كنند. مكانيك كوانتوم به ويژگيها و رفتار ذرات زير اتمي مي پردازد و با كوانتومها يا كميتهاي گسسته سروكار دارد. در حاليكه در نسبيت عام فضا - زمان پيوسته است.

    دو - بايد ارتباط بين فرميونها و بوزونها توضيح داده شود. همجنانكه مي دانيم فرميونها شامل ذراتي نظير الكترونها و پروتونها هستند كه داراي اسپين نادرست مي باشند و بوزونها داراي اسپين درست هستند.

    سه - هگز بوزونها بايد توضيح داده شوند، يعني اينكه ذرات چگونه جرم به دست مي آورند. با توجه به رابطه جرم - انرژي مي دانيم هرگاه ذره اي در يك ميدان شتاب بگيرد، انرژي و در نتيجه جرم آن افزايش مي يابد. بنابراين مسئله اين است كه اين پديده يعني افزايش جرم را چگونه مي توان توجيه كرد؟

    راه حل

    براي رسيدن به يك راه حل اساسي كه بتواند مشكلات عمده ي فيزيك معاصر را بر طرف سازد، راه هاي مختلفي وجود كه به نتايج متفاوت و گاهي ناسازگار مي انجامد. نظريه هاي مختلفي كه در اين زمينه مطرح شده اند، بخوبي نشان مي دهند كه نگرش بانيان آنها بر اساس دو گانگي بين بوزونها و فرميونها شكل گرفته است. سئوال اساسي اين است كه آيا حقيقتاً بوزون و فرميون دو موجود كاملاً متفاوت از يكديگرند؟ در نظريه ريسمانها، ريسمان به عنوان يك بسته فوق العاده كوچك انرژي تلقي مي شود و كه با پيوستن آنها به يكديگر و با ارتعاشات مختلف آنها ساير ذرات نمود پيدا مي كنند. در نظريه هگر بوزون به دنبال ذره اي هستند كه موجب ايجاد يا افزايش جرم مي شود. اگر اين مسئله ي هگز بوزون را با دقت بيشتري بررسي كنيم شايد بتوانيم به نتايج جالب توجه تري برسيم.

    اجازه بدهيد تصورات خود را از بوزون و فرميون يا به عبارت ديگر از جرم - انرژي و نيرو تغيير دهيم. در فيزيك مدرن جرم و انرژي دو تلقي مختلف از يك كميت واحد هستند. جرم هر ذره را مي توان با محتويات انرژي آن اندازه گرفت و همچنين انرژي يك ذره را مي توان با جرم آن هم ارز دانست. لذا در فيزيك معاصر ما با دو كميت بيشتر سروكار نداريم، انرژي و نيرو.

    اگر رابطه ي نيرو و انرژي را با ديد متفاوتي مورد بحث قرار دهيم، مي توانيم به نتايج جالب توجهي برسيم. نيرو به عنوان انرژي در واحد طول مطرح مي شود كه براي آن رابطهي زير داده شده است:

    F=-dU/dx => du= - Fdx

    حال ذره اي را در نظر بگيريد كه انرژي آن در حال تغيير است. اين تغييرات را از دو جهت مي توان مورد توجه قرار داد. يكي از جهت افزايش و ديگري از جهت كاهش. از نظر افزايش نسبيت براي آن محدوديتي قائل نشده است و طبق رابطه ي جرم نسبيتي، جرم آن بينهايت قابل افزايش است. اما از جهت كاهش طبيعت خود براي آن محدوديت قائل شده و آن اين است كه تمام ذره تمام انرژي خود يا به عبارت ديگر، جرم - انرژي خود را از دست بدهد.

    ذره اي را در نظر بگيريد كه در يك ميدان داراي شتاب منفي است. اگر فاصله به اندازه ي كافي بزرگ و ميدان بسيار قوي باشد، آيا انرژي آن به صفر خواهد رسيد؟ چنين آزمايشي براي اجسام مثلاً يك فطعه فلز چندان قابل تصور نيست، اما براي يك كوانتوم انرژي( فوتون) به خوبي قابل درك است. زيرا در نسبيت فوتون نمي تواند از يك سياه چاله بگريزد. اين پديده را چگونه مي توان توجيه كرد؟ يكبار ديگر به رابطه نيرو - انرژي بر گرديم.

    F=-dU/dx => du= - Fdx

    در رابطه ي بالا انرزِ و فاصله تغيير مي كنند، اما نيرو ثابت است. اگر نيرو يعني F يك كميت ثابت و تغيير ناپذير است، چگونه مي توان هگز بوزون را توجيه كرد؟ يعني واقعاً اين كاهش يا افزايش جرم چگونه امكان پذير است. متاسفانه اين ديدگاه از مكانيك كلاسيك به نسبيت تسري يافت و هيچگونه بخثي در اين زمينه مطرح نشد. اگر بخواهيم با همان نگرش كلاسيكي مشكلات فيزيك و ناسازگاري نسبيت و مكانيك كوانتوم را بر طرف سازيم، راه به جايي نخواهيم برد، همچنانكه تا به حال اين چنين بوده است.

    اشكال بعدي كه مانع رسيدن به يك نتيجه ي قابل توجه مي شود اين است فيزيكدانان به مشكلات به گونه اي پراكنده برخورد مي كنند. هگز بوزون مسير خود را مي پيمايد، مكانيك كوانتوم مي خواهد مشكلات فيزيك را در چاچوب قوانين كوانتومي حل كند، و مهمتر از همه اينكه مكانيك كلاسيك تقريباً به فراموشي سپرده شده است. همه اينها هر كدام نگرشي خاص به جهان دارند و عموميت ندارند. در حاليكه طبيعت يگانه است و قانون نيز بايستي از يك وحدت برخوردار باشد كه هست. تركيب مكانيك كوانتوم و نسبيت زماني امكان پذير است كه نگرش هگز بوزون همراه با مكانيك كلاسيك نيز در اين تركيب منظور گردد .

    هر كدام از اين تئوري ها قسمتي از قوانين حاكم بر طبيعت را نشان مي دهند. اگر در يك نگرش همه جانبه اين قسمتهاي مختلف را كه با تجربه تاييد شده اند توام در نظر بگيريم مي توانيم به يك فيزيك يا يك نظريه براي همه چيز برسيم .

    از كجا شروع كنيم؟

    1 - با روند تكامل نظريه ها پيش مي رويم. نخست مكانيك كلاسيك را در نظر مي گيريم و به مورد خاص آن قانون دوم نيوتن توجه مي كنيم، اين قانون را با جرم نسبيتي يعني

    m=m0/(1-v2/ c2)1/2 , E=mc2

    و نظريه هگز بوزون مي توان تركيب كرد. اگر ذره/جسمي تحت تاثير نيرو جرمش تغيير مي كند، اين تغيير جرم ناشي از اين است كه بوزون (نيرو) تبذيل به انرژي مي شود. البته اين روند جهت معكوس نيز دارد، يعني در روند عكس با كاهش سرعت، انرژي به نيرو يا بوزون تبديل مي شود.

    2 - در مورد قضيه كار انرژي

    W=DE

    برخوردي دوگانه وجود دارد. قسمت كار آن را با مكانيك كوانتوم مد نظر قرار مي دهند و كار را كميتي پيوسته در نظر مي گيرند، در حاليكه با انرژي آن برخوردي كوانتومي دارند. در واقع بايستي هر دو طرف رابطه را با ديد كوانتومي در نظر گرفت. در اين مورد مثالهاي زيادي مي توان ارائه داد كه با اين برخورد دوگانه در تناقض قرار خواهد گرفت. اگر اين مورد را بكار بنديم مشكل ارتباط فرميونها و بوزونها بر طرف خواهد شد. اين مورد مكمل قسمت پيشين است و حرف تازه اي نيست.

    3 - اگر بپذيريم كه كار كوانتومي است، الزاماً به اين نتيجه خواهيم رسيد كه نيرو بطور كلي و از جمله گرانش نيز كوانتومي است. مفهوم صريح و در عين حال ساده آن اين است كه فضا - زمان كوانتومي است. با نگرش كوانتومي به گرانش يا به تعبير نسبيت فضا - زمان، مكانيك كوانتوم و نسبيت با يكديگر تركيب خواهند شد. تنها موردي كه در اين جا بايد متذكر شد اين است كه كوانتومي بودن فضا - زمان مي تواند انحناي آن را نيز نتيجه دهد.

    چنين نگرشي مي تواند به يك نظريه براي همه چيز منتهي شود. نظريه اي كه تحت عنوان نظريه سي. پي. اچ. مطرح شده است.

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •