صفحه 1 از 2 12 آخرینآخرین
نمایش نتایج: از شماره 1 تا 10 , از مجموع 11

موضوع: مقالات مرتبط با مغناطیس و الکترومغناطیس3

  1. #1
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    24 مقالات مرتبط با مغناطیس و الکترومغناطیس3

    آهنربا به اشیایی که میدان مغناطیسی تولید کنند، آهنرُبا گفته می‌شود.

    معنای لغوی
    آهنربا از دو بخش آهن و -ربا از فعل ربودن تشکیل شده. کاربرد واژه‌هایی مانند آهنربا و کهربا در فارسی پیشینه طولانی دارد.

    برابر اروپایی آن: اولین شرح مغناطش به یونانیان قدیم باز می‌گردد که این اسم را به مغناطیس دادند. این اسم از مگنزیا که نام یک دهکده‌ی یونانی است، مشتق شده‌است. از لحاظ لغوی Magnet به معنی «سنگی از مگنزیا» است. این سنگ حاوی مگنتیت (Fe2O3) بود و هنگام مالش آن به آهن، آن را آهنربا می‌کرد.

    تاریخچه
    تلاش جدی برای استفاده از قدرت پنهان مواد مغناطیسی بسیار پس از کشف آن انجام شد. به عنوان مثال در قرن ۱۸ام با ادغام تکه‌های کوچک مواد مغناطیسی تکه‌ی بزرگتری بدست آمد که مشخص شد توانایی بلند کردن قابل توجهی دارد.

    پس از اینکه اورستد در سال ۱۸۲۰ کشف کرد که جریان الکتریکی می‌تواند میدان مغناطیسی به وجود آورد، پیشرفت‌های زیادی در این زمینه حاصل شد. استورگن دانش خودش را با موفقیت برای ساخت اولین آهنربای الکتریکی در سال ۱۸۲۵ بکار برد. با اینکه دانشمندان زیادی (از قبیل گاوس، ماکسول و فارادی) با این پدیده از دیدگاه تئوریک درگیر شدند، اما توصیف درست مواد مغناطیسی به فیزیکدانان قرن ۲۰ ام نسبت داده می‌شود.

    کیوری و ویس در شفاف‌سازی پدیده‌ی مغناطش دائمی و وابستگی دمایی آن موفق بودند. ویس فرضیه‌ی وجود حوزه‌های مغناطیسی را مطرح کرد تا توضیح دهد که مواد چگونه می‌توانند آهنربا شده یا خاصیت مغناطیسی کل آنها صفر شود.

    جزئیات خواص دیواره‌های این حوزه‌های مغناطیسی توسط بلوچ، لاندو و نیل بررسی شد.


    کاربرد
    مواد مغناطیسی جزء جدانشدنی فناوری مدرن هستند. آهنرباها یکی از اجزای مهم بسیاری از وسایل الکترونیکی و الکترومکانیکی هستند. کاربرد عمده‌ی آهنرباهای دائم در تبدیل انرژی مکانیکی به انرژی الکتریکی و بالعکس است. (مانند موتورهای الکتریکی و ژنراتورها) مغناطیس‌ها همچنین در حافظه‌های مغناطیسی (صفحات هارد دیسک و فلاپی‌دیسک‌ها و کارت‌های پلاستیکی حافظه)

    منابع
    Buschow, K.H.J., de Boer, F.R., Physics of Magnetism and Magnetic Materials, Kluwer Academic Publishers, 2004.
    _____

  2. #2
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    مفاهيم بنيادي طيف الكترومغناطيس

    ‎ديد كلي‎:‎ ‎به طور غير منطقي ولي به ترتيب تاريخي ، از ناحيه مرئي شروع مي كنيم و به خارج از آن فرا مي رويم. ‏در واقع اگر ناحيه مرئي را يك كمي به طرف فروسرخ و فرا بنفش گسترش دهيم ‏ناحيه نسبتا مشخص بين ( 1 ميكرومتر ) 2000 آنگستروم به وجود مي آيد. كه آسان ترين ناحيه براكار ‏كردن است.

    كوارتز در تمامي اين ناحيه و شيشه در بيشتر قسمت هاي آن شفاف است. لذا امكان انتخاب ‏بين منشور ، توري و تداخل سنج به عنوان پاشنده وجود دارد و مشكلي در مورد پنجره ها يا عدسي ها پيش نمي ‏آيد‎.

    ‎جذب و اتلاف طيف الكترومغناطيسي‎:

    ‎طيف الكترومغناطيسي مي تواند به شكل عكاسي يا فوتوالكتريكي ثبت شود. براي طيف نمايي ‏جذبي و گسيلي رده وسيعي از منابع در دسترس اند. در زير طول موج 2000 آنگستروم ، ابتدا هوا ( ‏يا به طور دقيق اكسيژن ) سپس كوارتز شروع به جذب مي كنند.

    براي‎ ‎فايق آمدن به شكل اولي، ‏مسير نوري بايد تخليه شود و نام فرا بنفش خلا ، براي اين ناحيه از همين جا ناشي مي شود. براي ‏گسترش برد عبور به اندازه چند صد آنگستروم ( تا 1040 آنگستروم كه حد عبوري ليتيوم فلورايد است ) مي ‏توان بلورهاي ديگر را با اپتيك كوجايگزين ساخت، اما اين امر فقط براي تكنيك هاي پايين عملي ‏است‎.

    ‎تداخل سنج ها به علت انعطاف هاي سطحي و باز تابندگي پايين داراي مشكلات زيادي هستند. در پايين تر ‏از حدود 1800 آنگستروم توري ها تنها پاشنده هاي قابل دسترس براي تفكيك بالاي اند. عدسي ها و ‏‏آينه ها( كه داراي باز تابندگي هاي كمي در اين ناحيه اند ) با به كادن توري ، حذف مي شوند. در ‏پايين تر از حدود 400 آنگستروم ، براي غلبه بر باز تابندگي كم ، توري ها بايستي در وضع فرود ‏خراشان به كار روند از طرف ديگر آشكار شدن گرما مسئله ساز نمي باشد‎.

    ‎بررسي نواحي طيفي‎:

    ‎روش هاي عكاسي يا فوتو الكتريكي مي توانند در سر تا سر ناحيه ‏فرابنفش مورد استفاده قرار گيرند. مسائل مربوط به استفاده از منابع نوري مناسب ممكن است در ناحيه ‏پايين تر از 1040 آنگستروم كه در آن پنجره ها نمي توانند براي در بر گرفتن يا مجزا كردن گاز هاي مختمورد استفاده قرار گيرند، به صورت حاد درآيند. نواحي طول موج كوتاه و بلند اطراف 1040 آنگستروم به ‏ترتيب به نام كاشفين آنها شومن و ليمن ناميده مي شود‎.

    ‎حركت به سوي فروسرخ ، در مي يابيم كه انتخاب بين منشورها و شبكه ها و تداخل ‏سنج ها تا حدود 40 ميكرومتر ، حد موثر بلور آزاد است. تداخل سنج هاي ساخته شده از فيلم هاي ‏نازك نظير پلي تن را مي توان ، تا طول موج هاي باز هم بلند تري مورد استفاده قرار داد به طوره ‏طيف نمايي تبديل فوريه مي تواند با طيف سنجي شبكه در ناحيه فرو سرخ رقابت ‏كند‎.

    ‎با ايجاد ليزر هاي رنگي كوك پذير طيف نمايي بدون شبكه ها يا تداخل سنج ها در ‏موارد معيني امكان پذير مي شود. به دليل بالا بودن ضريب باز تابشان مي توان آينه هاي متعددي را بدون ‏اتلاف قابل توجه در شدت به كار برد. مسئله اساسي در قسمت عمده ناحيه ، ناكافي بودنت است. اغلب ‏منابع در ناحيه فروسرخ انرژي نسبتا كمي را تابش مي كنند و در اثر آشكار شدن گرما در معرض مسائل ‏جدي ناشي از پارازيت قرار مي گيرند. اغلب لازم است كه تفكيك را فداي به دست آوردن نسبت مناسبي از ‏علامت به پارازيت بكنيم.

    ‎طيف نمايي در فروسرخ معمولا به علت فقدان منابع خطي با كافي ، به صورت جذب انجام مي شود. از ‏طرف ديگر ضرورت تخليه در فروسرخ چندان جدي نيست زيرا اكسيژن و ازت خشك جاذب نيستند، و ‏فقط كافي است كه بخار آب و گاز كربنيك حذف شوند.

    ‎در طول موج هاي حدود چند دهم ميلي متر ، ناحيه فروسرخ با ناحيه كه موج روي هم مي افتند و يك تغيير ‏كلي در روش پيش مي آيد. منبع و آشكارگرهاي برگزيده نخست به شكل ليزرهاي زير ميليمتر در طول موج ‏هاي مخصوص و سپس به صورت نوسان سازهاي كليسترون كوك پذير به آسانيبل حصول هستند. در ‏اين حالت پاشنده ها به كلي زائد شده و طيف نمايي جذب فقط شامل مشاهده تغييرات در علامت در حين ‏جاروب منبع و آشكارگر بر روي محدوده طول موج مورد لزوم مي شود‎.

    ‎طيف نمايي فركانس راديويي در دوره نسبتا متفاوت قرار مي گيرد. از يك طرف به سادگي گسترش ‏طيف نمايي كه موج است به طرف طول موج هايي بلندتر ، از طرف ديگر ادغام روش هاي متعدد تشديد است ‏كه براي مطالعه گذارهاي بين زير ترازهاي مغناطيسي و يا ساختار فوق ريز توسداده شده اند. در اين ‏روش ها ، انتقالات هر چند كه به وسيله ميدان فركانس راديويي القا شوند، معمولا نه از طريق جذب انرزي ، ‏بلكه به وسيله روش هاي ديگر ، نظير انحراف حاصل از تغيير در جهت اسپين يا تغييري در جهت ‏‏قطبش تابش تشديد آشكار مي شوند‎.‎

  3. #3
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    مغناطش می‌‌دانیم که همه مواد از اتمها ساخته شده‌اند و هر اتم شامل الکترونهای در حال حرکت است. بنابراین مسیر حرکت الکترونها را می‌‌توان مدار الکترونی در نظر گرفت. این مدارها که هر کدام به یک تک اتم محدود است، جریان اتمی ‌نام دارند. جریان اتمی که جریانهای کامل دورانی هستند و منجر به انتقال بار نمی‌‌شوند، اما به هر حال این جریان نیز می‌‌تواند میدان مغناطیسی تولید کند. جریان اتمی مدار کوچک بسته‌ای به ابعاد اتمی ‌است و لذا می‌‌توان آن را به طرز مناسبی به صورت یک دوقطبی مغناطیسی توصیف کرد و چون ماده از تعداد زیادی اتم تشکیل شده است، لذا در حالت کلی برای هر ماده می‌‌توان یک گشتاور دوقطبی کلی به نام مغناطش تعریف کرد که نماینده گشتاور دوقطبی مغناطیسی کل ماده است.

    در رابطه ارائه شده برای مغناطش ، فرایند حد همان فرایند حد ماکروسکوپی معمولی است و ΔV را از دید ماکروسکوپی خیلی کوچک می‌‌کنیم، اما نه آنقدر کوچک که از لحاظ آماری تعداد زیادی اتم نداشته باشد. در این صورت کمیت M یک تابع برداری نقطه‌ای خواهد بود. اگر چنانچه ماده نامغناطیده باشد، چون جهت m_iها کاملا کاتوره‌ای است، بنابراین \sum m_i صفر می‌‌شود و لذا مغناطش کل صفر خواهد بود.

    ماده در میدان مغناطیسی خارجی
    اگر چنانچه ماده‌ای را در یک میدان مغناطیسی خارجی قرار دهیم، صرف نظر از اینکه ماده مغناطیده باشد (M \ne 0) یا نامغناطیده (M = 0) باشد، در میدان خارجی گشتاور دوقطبی‌های m_i در اثر میدان مغناطیسی خارجی می‌‌چرخند تا با میدان همسو شوند. بنابراین M دیگر صفر نخواهد بود. این فرایند شبیه فرایند قطبش در مواد دی الکتریک است. در آنجا میدان الکتریکی خارجی سبب همسو شدن گشتاور دو قطبی‌های الکتریکی با میدان می‌‌شود.

    جریان مغناطش
    از دیدگاه ماکروسکوپی می‌‌توان تمام اثرهای مغناطیسی مربوط به ماده را بطور مناسبی برحسب M و مشتقات آن بیان کرد. یکی از این مشتقات \nabla x M می‌‌باشد. این کمیت با یک چگالی جریان انتقالی که بتواند همان میدان مغناطیسی ایجاد شده توسط M را بوجود آورد، معادل است. این چگالی جریان را چگالی جریان مغناطش می‌‌گویند.

    اهمیت مغناطش
    برای محاسبه میدان مغناطیسی حاصل از مواد مغناطیسی ، مغناطش نقش فوق‌العاده زیادی دارد، یعنی در واقع مغناطش نماینده جسم مغناطیسی است. به عنوان مثال ، محاسبه میدان مغناطیسی حاصل از یک ماده مغناطیده در فاصله r از این ماده ، ابتدا کمیتی به نام پتانسیل برداری محاسبه می‌‌شود. پتانسیل برداری به صورت مجموع دو رابطه انتگرالی بیان می‌‌شود. یک انتگرال حجمی ‌که برحسب چگالی جریان مغناطش نوشته می‌‌شود و یک انتگرال سطحی که برحسب چگالی سطحی جریان مغناطش (جریان مغناطش در واحد طول که در لایه سطحی ماده جاری می‌‌شود) که به صورت M x n تعریف شده، بیان می‌‌گردد. در این رابطه n بردار یکه عمود بر سطح است.

    نکته دیگری که برای اهمیت مغناطش می‌‌توان به آن اشاره کرد، در تعریف شدت میدان مغناطیسی است. معمولا در مورد هر ماده مغناطیسی یک کمیت نرده‌ای به نام پذیرفتاری مغناطیسی تعریف می‌‌شود. اگر این کمیت را با χ_m نشان دهیم و شدت میدان مغناطیسی را با H بیان کنیم، در این صورت در بیشتر موارد یک رابطه خطی بین H و M برحسب χ_m بیان می‌‌شود، یعنی اگر ماده همسانگرد و درعین حال خطی باشد، در این صورت خواهد بود.

  4. #4
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    ضبط بر روی نوار مغناطیسی یکی از کاربردهای مغناطیس ضبط مغناطیسی است. ضبط مغناطیسی در طی دو بخش مجزا کارهای ضبط و پخش را انجام می‌دهد. بخش اول انتقال اطلاعات یک سیگنال الکتریکی به نوار مغناطیسی است بصورت ترکیبی از مغناطیس‌های دائم روی نوار و تبدیل آن به یک سیگنال الکتریکی است این بخش فرایند پخش کردن است.
    ذخیره سیگنال الکتریکی روی نوار مغناطیسی
    نوار مغناطیسی یک نوار پلاستیکی است پوششی از ذرات اکسید آهن روی آن قرار دارد. این ذرات بطور تصادفی قرار گرفته‌اند که مغناطش آنها در پاسخ به نیروی مغناطیس کننده هد ضبط تغییر می‌کند. با عبور نوار از جلوی هر ضبط (آهنربای الکتریکی) میدان شکاف هد در نوار نفوذ کرده و پوشش اکسید آهن مغناطیده می‌شود. مغناطش نوار معادل یک سری آهنرباست.

    در طول فرآیند ضبط کردن تعدادی آهنربای میله‌ای که از تعداد زیادی ذره اکسید آهن درست شده‌اند، روی نوار ایجاد می‌شود. طول هر آهنربای میله‌ای به سرعت نوار و فرکانس سیگنال وابسته است. هر ضبط با داشتن شکافهایی در آن ، میدان مغناطیسی را در اختیار قرار می‌دهد، علاوه بر این ، منحنی مغناطش خود را خطی می‌کند در نتیجه سیگنال خالص از آنچه که ضبط شده است را در اختیار ما قرار می‌دهد.

    خطی کردن نوار مغناطیسی
    مواد مغناطیسی بکار رفته در نوارها ، از نوع فرومغناطیس لخت هستند لذا غیر خطی بوده لذا سیگنال رسیده به هر ضبط با ایجاد مغناطش غیر خطی در نوار ، اعوجاجهای شدیدی را هنگام پخش ایجاد می‌کند. با کارهایی که انجام می‌دهند می‌توانند جلوی این اعوجاجها را بگیرند.

    بازیابی سیگنال ضبط شده
    سیگنال ضبط شده بصورت یکسری آهنربای دائم بر روی نوار قرار دارد. این سیگنال با عبور نوار از جلوی شکاف هد پخش ، بر اساس شبیه ضبط است، بازیابی می‌شود. بدین صورت که تصویر آهنربای ضبط شده بر پشت پوشش اکسید آهن می‌افتد. با عبور نوار از جلوی هد ، قسمتی از میدان آهنرباها وارد شکاف هد پخش شده و از آن می‌گذرد. طبق قانون فاراده ، ولتاژ القایی پیچک پخش ، سیگنال اولیه را بازسازی می‌کند. این ولتاژ را می‌توان تقویت کرد.

    اثر تلفات شکاف هد در هنگام پخش
    خروجی هد پخش عملا بطور خطی با فرکانس القا کننده متناسب نیست. در واقع خروجی بصورت حاصلضرب تلفات شکاف قرار دارد. تلفات شکاف با توجه به فاصله بین قطب شمال و جنوب هد و طول موج ضبط شده بر روی نوار انجام می‌گیرد

  5. #5
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    تك قطبي مغناطيسي (Magnetic Monopole)


    GUT (Grand Unified Theories) و تئوري هاي ابر ريسمان (Superstring) هر دو وجود ذره اي با يك قطب مغناطيسي را پيش بيني مي كنند اما مشكلي كه در اين مدل وجود دارد اولا توليد بار مغناطيسي و ميدان در آنهاست و ثانيا رصد نشدن اين ذرات تا به امروز بوده است.

    همچنين تعريف اسپين اين ذرات هم كار مشكلي به نظر مي رسد.

    اگر مقدار بار را در معادلات گاس (Gauss) و فارادي (Faraday) كه هركدام از معادلات ماكسول (Maxwell) بهره مي برند مجهول قرار دهيم مقدار آن صفر به نظر خواهد رسيد. خود اين موضوع براي پذيرش سخت است. زيرا ذرات زيراتمي (حتي كوارك ها كه نوترون خنثي را تشكيل مي دهند) داراي بار هستند.

    امروزه در نسبيت براي اثبات اينكه نيروي ميادين مغناطيسي از ديگر نيروها متفاوت است از تبديلات لورنتز (Lorentz Transformations) استفاده مي كنيم.

    اما براي آشكارسازي اين ذرات بايد تنها از راه نسبيت وارد شويم.

    از معدود افرادي كه مي خواست اين كار را كند ديراك بود.

    ديراك قصد داشت با معادلات كوانتومي ديدي كاملا نسبيتي از الكترومغناطيس بدست بياورد.

    او در سال 1931 نشان داد بدين منظور نمي توان از مكانيك كوانتومي استفاده كرد زيرا اثبات كرد كه حتي اگر تك قطبي مغناطيسي در دنيا وجود داشته باشد بايد داراي بار كوانتيده (Quantized) شود.

    براي اين منظور بايد واحدي نيز مي بود. ديراك با نگاهي جديد سعي در شكافت مساله كرد و با انجام اعمال بسيار پيچيده در رياضي و با استفاده از تابع دلتا (تابع ديراك) دريافت كه واحد بار كوانتيده بايد عكس واحد بنيادين بار الكتريكي باشد.

    ديراك در تمام اين محاسبات ذره ي فرضي را الكترون در نظر گرفته بود و لازم بود كه فضا-زمان را از يكديگر باز كنيم.

    ديراك براي اين كار ريسمان ديراك (Dirac String) را بوجود آورد. رفتار اين ريسمان تقريبا همانند سيم پيچ در اثر آهارونوف – بوم (Aharonov-Bohm Effect) بود.

    اثر مذكور تاثير بار بر ميادين مغناطيسي را در غياب ذره در ميدان بررسي مي كند.



    به دليل بيان تمام اين مطالب جديد تئوري هاي ديگري كه در راس آنها تئوري شاخص (Gauge Theory) قرار داشت سعي در شناخت ساده تر بار كوانتيده كردند.

    در سري تئوري هاي شاخص نيز فرضيه اي كه از همه بيشتر مورد توجه قرار گرفت در مكانيك هيگز (Higgs Mechanism) اين موضوع را بررسي مي كرد و تك قطبي هوفت – پولياكوف (Hooft-Polyakov Monopole) نام داشت. ويژگي قابل توجهي كه اين مدل داشت نقطه اي نبودن بررسي آن بود. به اين معنا كه ديگر ذره ي خاصي مثل الكترون ديراك را مدنظر نداشت.

    در واقع اين مدل ديگر محدود به پراكندگي ايده آل لورنتز نبود.

    همچنين در مدل ديراك از معادله ي ديراك استفاده شده بود كه ذره را به حركت الكتروني محدود مي كرد.

    در معادله ي ديراك الكترون پس از يك چرخش به نقطه ي اول خود مي رسد در صورتيكه مشخص نبود اين ذرات تك قطبي چه نوع اسپيني دارد!

    حال گفته بوديم براي بررسي مدل ديراك بايد فضا-زمان را از هم باز كنيم.

    توپولوژي (Topology) فضا-زمان در حالت معمول R4 مي باشد. اگر زمان را از آن حذف كنيم تقريبا مسئله هم ارز با هوموتوپي (Homotopy) خواهد شد و توپولوژي آن برابر با كره (S2) خواهد بود.

    لازم به ذكر است كه در توپولوژي هوموتوپي دو تابع پيوسته است كه از يك فضاي توپولوژي به فضاي ديگري مي رود.

    تئوري شاخص با اين محاسبات نشان مي دهد كه تك قطبي ديراك الزاما نبايد داراي بار كوانتيده باشد.

    اگرچه اين تئوري مسائل را در قالب يك گروه واحد (ماتريس واحد n x n) بررسي مي كند كه اين نوع بررسي بايد الزاما جدا از توپولوژي كره باشد. اين بدان معناست كه گروه واحد U(1) در Gauge Theory اصلا مماس بر كره نيست كه توپولوژي برابري با آن داشته باشد و توپولوژي در كل اتصال و به همرسي فضاها در هندسه را بررسي مي كند.

    اين خود يك خلا بزرگ بود. زيرا پيش بيني ديراك در مورد بار كوانتيده اصلا درست توجيه نمي شد.

    اما در سالهاي بعد و با بدست آوردن مقدار تقريبا صفر براي يك تك قطبي از معادلات گاس و فارادي اين تئوري ارزش خود را دوباره پيدا كرد.

    بعد از مدتي تئوري هاي شاخص و كوانتومي سعي كردند كه با يكديگر يك تئوري واحد را بيان كنند و به همين ترتيب GUT بيان شد. اين تئوري ذراتي را به نام ديون (Dyon) معرفي مي كند كه هم زمان هم بار الكتريكي دارند و هم بار مغناطيسي. طبق اين مدل تك قطبي مغناطيسي ذره اي است كه بار الكتريكي صفر و عدد لپتوني يك دارد.

    اين بدان معناست كه تك قطبي مغناطيسي مانند الكترون نبايد واپاشي داشته باشد و تجزيه شود.

    همچنين اين مدل طبق معادلات فريدمان (Freidmann Equations) بيان مي كند چگالي ذرات تك قطبي در دنياي ما حدودا بايد 1011 برابر چگالي چرخشي (Critical Density) باشد. بنابراين بايد به طور متداول در دنياي ما قابل رصد باشند. (در بين هر 1029 ذره يك تك قطبي بايد ديده شود).

    گرچه پيش بيني مي شود اين ذرات ارتباط زيادي با X Bosons و Y Bosons داشته باشند و محدوده ي جرم آنها در آزمايشات 600 (Gev/C2) تا 1017 (Gev/C2) تعيين شده است اما از آنجا كه ايجاد اين نوع از بوزون ها حتي در CERN به دليل جرم زيادشان امكان ناپذير مي باشد هنوز اين ايده در حد يك فرض مانده است.

    اما دانشمندان در تلاش هستند كه اين نوع بوزون ها را در توجيه واپاشي پروتون به كار گيرند. اين ايده ها در صورتي ببان شده اند كه در سال هاي اخير در ژاپن توانسته اند نيمه عمر تقريبي پروتون منفرد را 1035 سال پيش بيني كنند كه اين نتيجه عملا ورود اين بوزون ها را به مسئله نقض مي كند.

    گرچه تا به حال ذره اي تك قطبي مشاهده نشده است و دقيقا بر همين مبنا مدل هاي كيهان شناسي پيش بيني مي كنند كه اين ذرات بعد از بيگ بنگ تنها بايد تعداد كمي را شامل شوند!

    اگر اين مدل را بخواهيم بپذيريم بايد نتيجه ي آزمايشات را به دو نوع بوزون مذكور ربط دهيم كه تك قطبي ها را محدود به اجرام بسيار بالا مي كند!



    ديدگاه VMR-PCR:



    در "مدل كيهاني VMR-PCR" بيان كرديم كه اين نظريه تمام عالم را به دو ذره يكي بوزون و ديگري فرميون مرتبط مي كند و اين ذرات را تك قطبي و مكمل يكديگر مي خواند.

    اين دو ذره در مركز عالم وجود دارند و داراي جرم زيادي متمركز در خود مي باشند (كه اين جرم و چگالي زياد باعث بيگ بنگ شده است).

    از آنجاييكه دنيا در حال انبساط است پس هنوز جرم متمركز در مركز دنيا بايد مقدار عظيمي باشد.

    تمام اين جرم را نمي توان به آن دو ذره مرتبط كرد اما گفتيم كه همواره مقدار اختلاف بين نيروي دافعه ي خلا و ماده ناچيز است.

    همچنين اينكه تنها دو ذره موجود باشد يا اين خود نيز نياز به بررسي و تجربه ي بيشتري است. اما اينكه چرا اين ذرات در دنيا منتشر شده نيستند تنها مي توانند يك جواب داشته باشد:

    مقدار ذرات تك قطبي هميشه در مركز دنيا ثابت است و در موقعيتي قرار دارد كه وقتي نوبت به انتشار آنها مي رسد جرم متمركز در مركز آنقدر كم است كه دافعه ي خلا شروع به منقبض كردن دنيا مي كند.

    اما اين مدل در هر حال مي تواند مسئله ي انتشار نيافتن اين ذرات در دنيا را توجيه كند.

    تنها تفاوتي كه نمي گذارد اين مدل نظر دانشمندان را تاييد كند اين مسئله است كه مدل VMR-PCR به جاي دو بوزون X و Y يك بوزون و يك فرميون را پيشنهاد مي كند. (X Boson – Y Fermion).



    اينكه بار و ديگر پارامترها در اين ذرات بايد كوانتيده باشد از نظر VMR-PCR كاملا صحيح است.

    زيرا در "مدل ديناميك و مكانيك VMR-PCR" بيان كرديم كه كوانتوم در همرسي قطرهاي ذوزنقه هاي ايجاد شده تعريف مي شود و مركز دنيا خود راس مثلث است. پس هرچيزي كه در آنجاست بايد كوانتيده باشد.

    اما مسلما بار الكتريكي براي يك ذره ي تك قطبي وجود ندارد. زيرا شارش بايد بين دو منبع غيرهمنام صورت گيرد.

    چگونه بار الكتريكي در يك ذره ي منفرد تك قطبي شارش كند؟

    اما بالعكس در اين مدل براي مقدار بار مغناطيسي بي نهايت پيش بيني شده زيرا همانطور كه در مدل كيهاني گفتيم قدرت ميدان اجرام سماوي از بيگ بنگ تا به حال پيوسته در حال كاهش بوده است.

    اما در لحظات بعد از بيگ بنگ داراي بيشترين قدرت خود بوده اند. اين نشانه ي وجود يك شارژ مغناطيسي در مركز دنياست. بنابراين نبايد قدرت ميدان و بار مغناطيسي اي محدودي داشته باشد.

    مشكل ديگري كه بيان كرديم مسئله ي اسپين است.

    با فرض اينكه اين دو ذره در كنار يكديگر قرار گيرند و همديگر را مكمل شون مدلي براي چرخش و دوران آنها ايجاد نمي شود. زيرا يكي از آنها فرميون با اسپين نيمه صحيح و ديگري بوزون با اسپين صحيح است.

    گفتيم كه مركز دنيا بر راس مثلث در مدل VMR-PCR قرار دارد. به همين دليل زمان سفر در نظر گرفته مي شود.

    بر همين مبنا متوجه مي شويم كه سرعت اين ذرات نيز صفر است و الزاما اسپين آنها صفر مي شود.

    ولي با يك مثال نتيجه را بهتر بيان مي كنيم.

    اگر جرمي با سرعت بي نهايت در حال چرخش به دور خود باشد آيا ما متوجه مي شويم كه در حال چرخش است؟

    ثابت به نظر مي رسد. زيرا در هر لحظه هر نقطه اي از آن در همه جا وجود دارد.

    اين خيلي بعيد است كه با چگالي زياد مركز دنيا چرخشي براي آن نداشته باشيم.

    سرعت نهايت در VMR-PCR همان C2 است. بنابراين اينگونه اسپين هم بايد در نهايت خود باشد.

    مقدار آن مشخص نيست. زيرا دلايل واضحي براي تعيين آن نداريم اما هرچه هست در نهايت است.

    بنابراين آن را بي نهايت مي ناميم.

    اين مدل ديگر جاي سوالي را باقي نمي گذارد.

  6. #6
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    مغناطیس گرانشی
    فضاپیمای Gravity Probe B or GPB بیستم آوریل 2004 زمین را برای جستجوی نیرویی از طبیعت که در وجودش تردید است، ترک کرده است. این نیرو که هیچ وقت ثابت نشده مغناطیس گرانشی یا Gravitomagnetisem نامیده می‌شود. مغناطیس گرانشی بوسیله ستاره‌ها یا سیاره‌هایی که به دور خود می‌چرخند تولید می‌شود گفته می‌شود که این نیرو از نظر شکل شبیه یک میدان مغناطیسی است که توسط یک کره (توپ) باردار در حال چرخش تولید می‌شود، بار را با جرم جایگزین کنید، می‌شود مغناطیس گرانشی ما در حالی که زندگی می‌کنیم، مغناطیس گرانشی را احساس نمی‌کنیم. اما بر طبق نظریه عام انیشتین این حقیقت دارد، وقتی که یک ستاره یا سیاهچاله یا هر چیزی که جرم زیادی دارد به دور خود می‌پیچد فضا و زمان اطراف را به دور خود می‌کشد.

    عملی به نام کشش چارچوب
    ساختار فضا - زمان مثل یک گرداب پیچیده می‌شود. انیشتین به ما می‌گوید تمام نیروهای گرانشی هم ارز با خم شدن (پیچیده شدن) فضا-زمان است که مغناطیس گرانشی است.

    مغناطیس گرانشی چه کار می‌کند؟
    می‌تواند مدار اقمار را منحرف کند و باعث شود که ژیروسکوپ قرار داده شده در زمین بلرزد. هر دو پدیده خیلی کوچک هستند و اندازه گیری آن سخت است. محققان تحت رهبری فیزیکدانان سعی می‌کنند انحراف مسیر اقماری را که مغناطیس گرانشی آن را ایجاد می‌کند آشکار کنند. برای مطالعه این دو پدیده ، آنها از ماهواره‌های لیزری ژئودینامیکی Lagoes استفاده کردند.

    دو کره با قطر 60 سانتیمتر که آینه‌هایی روی آنها کار گذاشته شده است. دسته بندی لیزرهای دقیق از هر دو نوع مدارهایشان را نشان می‌دهد. اما یک مشکل وجود دارد: تحدب ناحیه استوایی باعث انحرافی بیلیونها بار بزرگتر از مغناطیس گرانشی زمین می‌شود. آیا کیوفولینی برای یافتن مغناطیس گرانشی این کشش بزرگ را با دقت کافی کم می‌کند؟ گفته می‌شود که دانشمندان زیادی نتایج کیوفولینی را پذیرفتند در حالی که دیگران شک دارند.

    آزمایشهای انجام شده برای یافتن این نیرو
    GPB که توسط دانشگاه استنفورد و ناسا توسعه داده شده، آزمایش را به گونه دیگری و با استفاده از ژیروسکوپ انجام داده است. فضاپیما ، زمین را در مدار قطبی به ارتفاع 400 مایل دور می‌زند. چهار ژیروسکوپ وجود دارد که هرکدام یک کره یا یک گوی به قطر 1.5 اینچ است که در خلأ معلق هستند و ده هزار بار در دقیقه می‌چرخند (بسامد حدود 167 هرتز). اگر معادلات انیشتین درست باشد و مغناطیس گرانشی واقعی باشد، ژیروسکوپهای در حال چرخش باید هنگامی که زمین را دور می‌زنند بلرزند. کم کم محور دورانشان جابجا می‌شود، تا یک سال دیگر محور دوران ژیروسکوپها در حدود 42 mili-arc second از جایی که آنها شروع کردند دور می‌شوند.

    GPB می‌تواند این زاویه را با دقت 0.5 mili-arc second یا حدود یک درصد اندازه بگیرد. هر چند زاویه اندازه گیری شده mili-arc second خیلی کوچک است، این را در نظر بگیرید که یک arc second برابر با یک درجه است. یک mili-arc second هزار بار از arc second کوچکتر است. مقدار 0.5 mili-arc second انحراف مورد انتظار در GPB هم ارز با این است که بخواهیم ضخامت یک ورق کاغذ را از فاصله صد مایلی اندازه گیری کنیم. حس کردن این مقدار به این کوچکی چالش بزرگی است. دانشمندانی که روی GPB کار می‌کردند باید تکنولوژیهای جدیدی کاملی را برای آن اختراع می‌کردند.

    فیزیکدانان هم نگران و هم هیجان زده هستند. نگران برای این که شاید مغناطیس گرانشی آنجا نباشد. نظریه انیشتین می‌تواند غلط باشد ( احتمالی که اکثراً دوستش ندارند) و این باعث تحولی در فیزیک خواهد بود. و به همین دلیل آنها هیجان زده نیز هستند. هر کسی خواستار این است که در پیشرفت بزرگ بعدی علم مقدم باشد و پیش دستی کند. نزدیک زمین مغناطیس گرانشی ضعیف است بخاطر همین است که ژیروسکوپهای GPB فقط 42 mili-arc second تکان می‌خورند.

    این میدان در کجا قوی ظاهر می شود؟
    اما در جاهایی از عالم این میدان قوی است. برای مثال در نزدیکی یک سیاهچاله یا یک ستاره نوترونی. یک ستاره نوترونی نوعی جرمی در حدود خورشید دارد اما قطر آن 10 کیلومتر است و چند هزار بار سریعتر از زمین به دور خودش می‌چرخد. بنابراین مغناطیس گرانشی در آنجا خیلی قوی خواهد بود. اخترشناسان احتمالاً آثار مغناطیس گرانشی را قبلاً مشاهده کرده‌اند. بعضی سیاهچاله‌ها و ستاره‌های نوترونی جتهای روشنی از ماده و با سرعتی نزدیک نور به بیرون دارند. این جتها در صورتی که از قطبهای یک شیئ چرخنده نشات بگیرند جفتی و مختلف الجهت هستند.

    نظریه پردازان تصور می کنند جت ها توسط مغناطیس گرانشی قدرت می گیرند. به علاوه سیاهچاله‌ها بوسیله دیسکی از ماده به نام accretion disk دارند و به قدری داغ است که تابش اشعه ایکس طیف الکترومغناطیسی ساتع می‌کند. شواهدی وجود دارد که توسط تلسکوپ های اشعه ایکس نظیر Nasa's chandra X ray obsevatiry جمع شده و می‌گوید این دیسکها می‌لرزند. ژیروسکوپهای GPB هم انتظار همین را می‌کشند.

    کاربرد مغناطیسی گرانشی در چیست؟
    اینجا در منظومه شمسی ما ، مغناطیس گرانشی در بهترین حالت می‌توان گفت که ضعیف است. سئوالی پیش می‌آید: بعد از آنکه مغناطیس گرانشی را پیدا کردیم چه کنیم؟ سئوالی شبیه این بارها در قرن 19 پرسیده شده بود. وقتی که ماکسول ، فارادی و دیگران الکترومغناطیس را بررسی می کردند. چه استفاد‌ه‌ای دارد؟ امروز ما توسط فواید تحقیقات آنها محاصره شده‌ایم: چراغ ، کامپیوتر ، ماشین لباسشویی ، اینترنت و غیره. مغناطیس گرانشی برای چه خوب است؟ آیا این فقط رخداد مهمی در راه طولانی جستجوی طبیعی ما برای فهم طبیعت است؟ یا چیزی غیر قابل تصور: زمان خواهد گذشت

  7. #7
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    نظريه تابش گرمايي


    هرگاه سيستمي از جسم هاي تابش كننده و جذب كننده بسته باشد در اينصورت گاز فوتوني « گازي كه جسم ها به ياري آن انرژي تبادل مي كنند » بايد با اتم هاي تامين كننده فوتون ها در تعادل باشد. تعداد فوتون ها با انرژي hv به اين بستگي دارد كه چند اتم در سطح E1 و چند تا در سطح E2 قرار دارند؟. در مورد تعادل اين عددها بدون تغيير باقي مي مانند. به هر حال از آنجا كه روندهاي تحريك و تابش در همان زمان روي مي دهند. تعادل ماهيت ديناميك دارد. اتم ها يا سيستم اتمي به طريقي ( با برخورد با ذره ها يا بر اثر جذب يك فوتون از خارج ) به سطح بالاتري ارتقا مي يابند. سيستم تا مدت تا حدي نامعين ( معمولا كسري از يك ثانيه ) در حالت تحريك شده پافشاري مي كندو سپس به سطح پايين تري بر مي گردد. اين روند را تابش خودبخودي مي خوانند. اتم همانند توپ كوچكي رفتار مي كند كه بر روي قله نوك تيزي با برجستگي ها و فرورفتگي هاي پيچيده قرار دارد. كمترين نسيم كافي است تا تعادل را بر هم زند. توپ رو به پايين دره معمولا پايين ترين نقطه غلت مي خورد و در اين صورت تنها تاثير نيرومندي مي تواند دوباره آن را در بياورد ما مي گوييم كه اتم در پايين ترين سطح افتاده است و در حالت پايداري است.

    ولي در اينجا بايد توجه كنيم كه بين قله و پست ترين بخش هاي دره حالت هاي بينابيني نيز وجود دارد. ممكن است توپ در فرورفتگي ناچيزي در حال سكون باشد كه مي توان آن را به ياري به اصطلاح دمي از هوا و با حداقل فشار كمي از مخمصه نجات داد.اين حالت ناپايدار تزلزل پذير است. بدين ترتيب در كنار حالت پايدار و تحريك شده نوع سومي از سطح انرژي - نوع تزلزل پذيري - وجود دارد. خلاصه كنيم در اينصورت انتقال در هر دو جهت روي خواهد داد. ابتدا يك اتم و سپس اتم ديگري به سطح انرژي بالاتري حركت خواهد كرد.

    در لحظه بعدي آن ها به سطح پايين تر سقوط خواهد كرد و نور خارج مي كنند ولي در همان زمان ويژه اتم هاي ديگري انرژي دريافت خواهد كرد و به سطح هاي بالاتر ارتقا خواهند يافت.

    قانون بقاي انرژي ملزم مي كند كه تعداد انتقال به بالا با تعداد انتقال به پايين برابري مي كند. تعداد انتقال به بالا به چه چيزي بستگي دارد؟

    دو عامل : نخست تعداد اتم ها در طبقه پايين تر و دوم تعداد ضربه ها يا برخورد كه آن ها را به طبقه بالاتر ارتقا مي دهد از تعداد رو به پايين چه ؟

    البته آن با تعداد اتم هاي واقع در طبقه بالاتر تعيين مي شود و به نظر خواهد رسيد كه مستقل از هر عامل ديگري است. اين دقيقا همان چيزي است كه فيزيكدانان در ابتدا تصور مي كردند و با اين حال تكه ها با هم جور در نمي آمدند. تعداد انتقال هاي بالا كه به دو عامل بستگي دارد با مقايسه تعداد انتقال هاي رو به پايين كه تنها به يك عامل بستگي دارد با افزايش دما بسيار تندتر افزايش مي يافت . معلوم شد كه اين مدل چنين آشكاري هيچ و پوچ است. دير يا زود همه اتم ها به بالاترين سطح رانده مي شدند. سيستم در حالت ناپايداري بدون هيچ تابشي مي بود.

    دقيقا همين نتيجه گيري غير ممكن بود كه انيشتين در سال 1926 از ميان استدلال هاي پيشينيان خود دست چين كرد. ظاهرا تاثير « نفوذ » ديگري وجود داشت كه بر انتقال اتم ها از طبقه بالاتر به طبقه پايين تر اثر مي گذاشت. هر كس تنها مي توانست نتيجه بگيرد كه علاوه بر انتقال خودبخودي انتقال اجباري به سطح پايين تر وجود داشت.

    به اصطلاح تابش ( اميسيون ) تحريك شده چيست؟ به طور خلاصه اين است سيستمي در سطح پايين تر است آن با تفاوتE2-E1=hv از سطح پايين تر جدا شده است. اينك هرگاه فوتوني با انرژي hv بر روي سطح بيفتد در اينصورت سيستم را وادار مي كند تا به سطح پايين تري حركت كند. اين فوتون افتاده در طول روند جذب نمي شود ولي به حركت خود ادامه مي دهد در حالي كه با فوتون تازه اي دقيقا از همان نوع كه توسط فوتون نخست ايجاد شده است همراهي مي شود. در اين استدلال دنبال هيچ منطقي نباشيد. آن استدلال اشراقي حدس بود و قرار بود آزمايش درست يا نادرست بودن آن را اثبات كند

    با استفاده از فرض خروج ( تابش ) تحريك شده ما قادريم فرومولي كمي اتخاذ كنيم كه نمودار تابش را به صورت تابعي از طول موج جسم گرم شده نمايان مي سازد. تئوري ثابت كرد كه توافق نماياني با آزمايش دارد و بدين ترتيب فرضيه را محق جلوه داد.

  8. #8
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    قانون لنز


    قانون لنز كه در مورد جريانهاي القايي بكار مي‌رود چنين بيان مي‌شود كه جريان القايي در مدارهاي بسته در جهتي است كه با عامل بوجود آورنده خود مخالفت مي‌كند. اين قانون علامت منفي موجود در قانون فاراده را توجيه مي‌كند.

    مقدمه

    طبق قوانين القاي الكترومغناطيسي اگر شارمغناطيسي گذرا از مدار تغيير كند، نيرو محركه الكتريكي در مدار جاري مي شود. با برقراري نيرو محركه القايي در مدار، جريان الكتريكي القايي در آن جاري مي شود. طبق قانون لنز جهت جريان القايي در مدار در جهتي است كه ميدان مغناطيسي حاصل از آن با تغييرات شار مغناطيسي گذرا از مدار مخالفت مي كند. اگر چكشي را از بالاي نردباني رها كنيم، هيچ نيازي به قاعده‌اي كه بگويد چكش به طرف مركز زمين يا در جهت مخالف آن حركت مي‌كند، نداريم. اگر در اين موقع كسي از ما بپرسد كه از كجا مي‌دانيد كه چكش سقوط خواهد كرد، بهترين پاسخي كه مي‌توانيم بدهيم اين است كه بگوييم، هميشه به اين صورت بوده است و اگر بخواهيم جوابمان علمي‌تر باشد، مي‌توانيم بگوييم كه زماني كه چكش سقوط مي‌كند، انرژي پتانسيل گرانشي آن كاهش مي‌يابد و برعكس انرژي جنبشي آن افزايش پيدا مي‌كند.

    اما اگر چكش به جاي سقوط ، به طرف بالا برود، در اين صورت انرژي جنبشي و انرژي پتانسيل آن هر دو افزايش پيدا مي‌كنند و اين موضوع پايستگي يا بقاي انرژي را نقض مي‌كند. استدلال مشابه را مي‌توان در مورد تعيين جهت نيروي محركه الكتريكي كه با تغيير شار مغناطيسي در يك مدار القا مي‌شود، بكار برد، يعني در اين مورد اخير نيروي محركه القايي بايد در جهتي باشد كه با اصل پايستگي سازگار باشد و اين با استفاده از قانون لنز توضيح داده مي‌شود.

    تاريخچه

    در سال 1834 ، يعني سه سال بعد از اين كه فاراده قانون القا خود را ارائه داد (قانون القا فاراده)، هاينريش فريدريش لنز (Heinrich Friedrich Lenz) قاعده معروف خود را كه به قانون لنز معروف است، براي تعيين جهت جريان القايي در يك حلقه رساناي بسته ارائه داد. اين قانون به صورت يك علامت منفي در قانون القاي فاراده ظاهر مي‌گردد. به اين معني كه در رابطه نيروي محركه القايي يك علامت منفي قرار داده و اعلام كنند كه اين علامت بيانگر قانون لنز است.

    تشريح قانون لنز

    حلقه رسانايي را در نظر بگيريد كه به يك گالوانومتر حساس متصل است. حال آهنربايي را در دست گرفته و به آرامي به اين حلقه ، نزديك كنيد. ملاحظه مي‌گردد كه با نزديك شدن آهنربا به حلقه عقربه گالوانومتر منحرف شده و وجود جرياني را در مدار نشان مي‌دهد. اين جريان را جريان القايي مي‌گويند. حلقه جريان ، مانند آهنرباي ميله‌اي ، داراي قطب‌هاي شمال و جنوب است.

    حال اگر آهنربا را از حلقه دور كنيم، باز هم گالوانومتر منحرف مي‌شود، اما اين بار انحراف در جهت مخالف است و اين امر نشان دهنده اين مطلب است كه جريان در جهت مخالف در حلقه جاري شده است. اگر ميله آهنربا را سر و ته كنيم و آزمايش را تكرار كنيم، باز همان نتايج حاصل خواهد شد، جز اين كه جهت انحراف‌هاي عقربه گالوانومتر عوض خواهند شد. براي تشريح اين آزمايش با استفاده از قانون لنز به صورت زير عمل مي‌كنيم:

    زماني كه آهنربا را به آرامي به حلقه نزديك مي‌كنيم، تعداد خطوط شار مغناطيسي كه از حلقه مي‌گذرد، تغيير مي‌كند و همين امر سبب ايجاد يا القا جريان در حلقه مي‌شود و چون در ابتدا هيچ جرياني وجود نداشت، اين جريان بايد در جهتي باشد كه با هل دادن آهنربا به سمت حلقه مخالفت كند. برعكس ، اگر بخواهيم آهنربا را از حلقه دور كنيم، باز جهت جريان در حلقه عوض شده و از دور كردن آن جلوگيري مي‌كند. يعني در حالت اول اگر قطب N آهنرباي ميله‌اي در طرف حلقه باشد، جريان القايي در حلقه به گونه‌اي خواهد بود كه در برابر آن يك قطب N ايجاد كند تا مانع نزديك شدن آهنربا شود.

    حال زماني كه آهنربا را از حلقه دور مي‌كنيم، حلقه جهت جريان خود را عوض نموده و با ايجاد قطب S ، آهنربا را جذب كرده و مانع از دور كردن آن مي‌شود.



    قانون لنز و پايستگي انرژي

    اگر توضيحات فوق بر اساس قانون لنز نبوده و عكس آن چيزي كه گفته شد، اتفاق بيفتد، يعني اگر جريان القايي به تغييري كه باعث بوجود آمدن آن شده است، كمك كند، قانون بقاي انرژي نقض مي‌شود، يعني اگر هنگام نزديك كردن قطب آهنربا به حلقه در برابر آن قطب مخالف S ايجاد شده و آهنربا را جذب كند، در اين صورت آهنربا بايد به طرف حلقه شتاب پيدا كند و رفته رفته انرژي جنبشي آن افزايش پيدا كند و در همين هنگام انرژي گرمايي نيز ظاهر مي‌شود. يعني در واقع از هيچ ، انرژي بوجود مي‌آيد. بديهي است كه چنين عملي هرگز نمي‌تواند درست باشد.

    بنابراين مي‌توان گفت كه قانون لنز چيزي جز بيان اصل بقاي انرژي نيست كه بطور مناسب در مورد مدارهاي حامل جريان القايي بكار مي‌رود.


    قانون لنز مربوط به جريانهاي القايي است و در مورد نيروي محركه القايي صادق نيست، يعني اين قانون فقط در مورد حلقه‌هاي رسانا بكار مي‌رود. اگر مدار باز باشد، معمولا مي‌توان تصور كرد كه اگر بسته بود چه اتفاقي مي‌افتاد و بدين وسيله جهت نيروي محركه القايي را معين نمود. مثلا اگر شار مغناطيسي گذرا از مدار به صورت درون سو باشد و كاهش پيدا كند، جريان الكتريكي در مدار القا مي شود، كه جهت اين جريان القايي به صورت ساعتگرد خواهد بود تا ميدان مغناطيسي حاصل از آن باعث تقويت ميدان مغناطيسي شار گذرا از مدار باشد.

    و اگر اين شار افزايش يابد، جهت جريان القايي در جهتي خواهد بود كه ميدان مغناطيسي حاصل از آن بر خلاف جهت ميدان شار باشد. پس جهت جريان پاد ساعتگرد است. بنابراين براي تشخيص جهت جريان القايي كافيست، با توجه به ميدان شار گذرا از مدار، جريان را در جهتي اختيار كنيم كه ميدان مغناطيسي حاصل از آن با برخلاف تغييرات ميدان مغناطيسي شار باشد.


    .




    .




    عکس های قانون لنز:

























    __________________

  9. #9
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    آهنربايي كره زمين

    1 - زمينه با پيدايش آهنربا ، پس از گذشت زمان كوتاهي پي بردند كه كرة زمين نيز خاصيت آهنربايي دارد ؛ تا آنجا كه نام قطب هاي آهن ربا را را بر اساس نام قطب هاي زمين نام گذاري كردند .
    به دنبال آن ، براي اولين در سال 1600 ميلادي ، توسط « گيلبرت » زمين به عنوان يك آهنرباي بزرگ معرفي شد .براي دليل وجود خاصيت مغناطيسي در كرة زمين ، نظريه هاي متفاوتي از آغاز شناخت آن تا كنون ، ارائه شده است و حتي بعضي مي گفتند ، خاصيت مغناطيسي كرة زمين ، تحت تأثير كره هاي ديگر است . اما آخرين نظريه ، اين خاصيت را به مواد مذاب داخل كرة زمين مربوط مي داند .

    2 - خاصيت مغناطيسي كرة زمين
    يكي از ويژگي هاي مهم كرة زمين ، وجود خاصيت آهنربايي در آن است و مانند اين است كه درون كرة زمين ، آهنرباي بسيار بزرگي قرار داده شده است و تا كنون ، نظريه هاي گو ناگوني براي علت آن ارائه شده است . آخرين نظريه اين است كه درون كرة زمين ، مواد مذاب در حال حركت وجود دارد و بيشتر اين مواد ، از جنس آهن و نيكل هستند . هنگامي كه اين مواد حركت مي كنند ، در اطراف جريان هاي الكتريكي ضعيفي به وجود مي آورند كه در مجموع ، باعث مي شود كرة زمين ، خاصيت آهنربايي پيدا كند و در اطراف كرة زمين ، ميدان مغناطيسي به وجود مي آيد . ما روي آهنرباي بزرگي به نام «زمين » زندگي مي كنيم .
    چندين سيارة ديگر از سياره هاي منظومه شمسي نيز ، ميدان مغناطيسي دارند كه از جمله آنها مي توان از عطارد و مشتري نام برد . اين خاصيت در خورشيد و بسياري ستاره هاي ديگر نيز ديده مي شود .
    خاصيت مغناطيسي كرة زمين ، نقش بسيار مهمي در جهت يابي كشتي ها و هواپيماها دارد . شمال و جنوب مغناطيسي زمين ثابت نيست و در فاصله هاي زماني ، به ميزان قابل ملاحظه اي تغيير مي كند .

    3 - زاويه انحراف
    چنانچه به كمك عقربة مغناطيسي به طرف قطب شمال يا جنوب برويم ، به قطب شمال و جنوب واقعي كرة زمين نمي رسيم . علت اين است كه قطب شمال و جنوب جغرافيايي و مغناطيسي كرة زمين ، با هم يكي نيست ؛ يعني اينكه قطب شمال مغناطيسي زمين ، درست روي قطب شمال جغرافيايي زمين قرار ندارد و اگر دو قطب جغرافيايي و مغناطيسي زمين را توسط خطي فرضي به به نام « محور » به هم وصل كنيم ، بين دو محور مغناطيسي و محور جغرافيايي زمين ، زاويه اي ساخته مي شود كه به آن ، زاوية انحراف گويند . اين زاويه ، به مرور زمان ، جزئي تغيير مي كند و ثابت نمي ماند ، و اندازة آن در نقاط مختلف زمين متفاوت است . زاوية انحراف در جهت يابي هواپيماها و كشتي ها بسيار مهم است . هم اكنون قطب شمال مغناطيسي كرة زمين ، در شمال كانادا قرار دارد .

    4 - زاويه ميل
    مطالعة مغناطيسي زمين ، نشان مي دهد كه خط هاي ميدان مغناطيسي زمين افقي نيست و با سطح زمين زاويه اي مي سازد همچنين مي دانيم خاصيت مغناطيسي يك آهنربا در نقاط مختلف آن متفاوت است و در دو قطب آن ، اين خاصيت بيشتر است . به همين ترتيب ، خاصيت آهنربايي كرة زمين در دو قطب بيشتر است . پس اگر يك عقربة مغناطيسي آزاد باشد تا بتواند در راستاي عمودي نيز حركت كند ، نوك اين عقربه نزديك قطب ها به زمين متمايل مي شود و در خط استواي مغناطيسي عقربه ، افقي قرار مي گيرد و در قطب ها ، به عنوان مثال قطب شمال ، نوك عقربه
    n آن ، عمود بر سطح افقي خواهد شد . پس محور مغناطيسي عقربه هاي مغناطيسي در مكان هاي مختلف استوا تا قطب ، نسبت به سطح افق تغيير كرده و زاويه اي با افق مي سازد ؛ اين زاويه را زاوية ميل گويند . پس زاويه ميل ، زاويه اي است كه محور مغناطيسي عقربه با سطح افق مي سازد همچنين اين زاويه ، در جهت يابي هواپيماها و كشتي ها نقش بسيار مهمي دارد ؛ در جغرافيا به اين زاويه ، عرض جغرافيايي گويند .

    5 - كشف معدن هاي آهني زمين
    مطالعة ميدان مغناطيسي زمين براي هدف هاي علمي و عملي ، از اهميت به سزايي برخوردار است . وجود ميدان مغناطيس زمين ، انجام پاره اي از بررسي هاي مهم ديگر را ميسر كرده است ؛ از آن جمله ، مي توان از روش هاي اكتشاف و مطالعة ذخاير زمين نام برد . تحليل دقيق ميدان مغناطيسي زمين ، وسيلة توانمندي براي بررسي ذخاير معدني زمين است . در حال حاضر ، جست و جوي مغناطيس سنجي ، روش ژئوفيزيكي مهم و گسترده اي است كه براي اكتشاف و ذخاير معدني به كار مي رود .
    در زمين ، نواحي اي وجود دارد كه در آن جا كميت هاي مغناطيسي به طور ناگهاني تغيير مي كنند و مقاديري به خود مي گيرند كه با مقادير مربوط به محل هاي مجاور ، تفاوت زيادي دارند تفاوت زياد كميت هاي مغناطيسي در اين ناحيه ها ، ناشي از فشار تودة بزرگي از سنگ آهن هاي مغناطيسي در زير سطح زمين است ؛ به همين دليل ، مطالعة ناهنجاري هاي مغناطيسي ، دانسته هاي باارزشي در مورد وجود و محل مخزن هاي سنگ هاي مغناطيسي ارائه مي دهد .

    6- مين هاي دريايي
    مواد مغناطيسي مانند آهن كه در ميدان مغناطيسي كرة زمين قرار گرفته باشند . به مرور زمان ، خاصيت مغناطيسي پيدا مي كنند ؛ مثلاً يك كشتي كه در آن آهن نيز به كار رفته است ، به مرور زمان آهنربا مي شود . از اين خاصيت براي به دام انداختن آن استفاده مي شود .
    عملكرد يك مين دريايي ، به گونه اي است كه خاصيت آهنربايي كشتي بر آن اثر گذاشته و فرمان انفجار صادر مي شود .
    در يك مين دريايي ، عقربه اي مغناطيسي قرار داده اند كه هنگام عبور كشتي از بالاي آن ، عقربه تحت تأثير قرار گرفته و مين از سطح زيرين دريا ، به سطح دريا مي رسد و سپس منفجر مي شود . براي خنثي كردن اين مين ها دو روش وجود دارد .
    الف ـ مغناطيس نيرومندي را با كابل هاي سيمي از زير هواپيما آويزان كرده و آن را نزديك سطح آب ، حركت مي دهند . آهنرباي قوي روي مين ها اثر گذاشته و آنها را خنثي مي كند . گاهي كابل سيمي دايره شكل را به طور شناور روي سطح آب قرار مي دهند و جرياني را از آن مي گذرانند ، كه بر اثر اين ميدان مغناطيسي يا جريان جريان ساز و كار ، مين ها عمل كرده ، بدون هيچ خسارتي منفجر مي شوند .
    ب ـ حلقه هايي از سيم عايق شده را به كشتي وصل كنند و جرياني را از آنها مي گذرانند ؛ به طوري كه ميدان مغناطيسي اين جريان مساوي و در خلاف ميدان مغناطيسي كشتي كشتي ( كه يك مغناطيس دائمي است ) باشد . وقتي اين ميدان ها با هم تركيب شوند ، يكديگر را خنثي مي كنند و كشتي بدون اين كه ساز و كار مين را به كار اندازند ، از روي آن مي گذرد .

    7 - باستان شناسي مغناطيسي
    ميدان مغناطيسي زمين ، منظم و پايدار نيست ؛ بلكه با گذشت سال ها در يك محل معين ، مقدار متوسط زاوية انحراف و ميل تغيير مي كند . اين انحراف محور مغناطيسي و در نتيجه ، تغييرات زاويه انحراف و زاويه ميل در يك محل نسبت به زمان ، شاخة جديدي را در « باستان شناسي » به نام «باستانو مغناطيسي» ايجاد كرده است كه توسط آن ، عمر كوره ها ، اجاق ها و آتشكده هاي قديمي تعيين مي شود . اساس كار ، مبتني بر اين است كه بيشتر خاك رسهايي كه اين اجسام از آنها ساخته شده اند ، حاوي مقدار كمي مواد مغناطيسي اند . سمتگيري اين مواد مغناطيسي ، با گرم شدن در موقع استفادة عادي تثبيت شده است . با مقايسة جهت فعلي ميدان مغناطيسي زمين با جهت ميدان مغناطيسي اين مواد ، مي توان قدمت باستاني تقريبي آن ها را تعيين كرد .
    در مقياس طولاني تر زمان ( دوران زمين شناسي ) ، شواهدي وجود دارد كه نشان مي دهد محور مغناطيسي زمين در مدت چهار ميليون سال گذشته ، نه بار

  10. #10
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    چوپان مغناطيسي

    الكترونها در محيط پلاسمايي مثل گوسفنداني هستند كه در يك مرتع باشند. آنها به اطراف پرسه مي زنند و گاهي به سقلمه اي احتياج دارند تا باعث شود در راه مشخص گله قرار گيرند. چهاردهم نوامبر، يك تيم تحقيقاتي روشي را عرضه كرد كه با آن مي توان ديواري يكطرفه ساخت كه كه اجازه ي ورود الكترونها از يكطرف را مي دهد ولي الكترونهايي كه از طرف ديگر ديوار مي خواهند وارد شوند را مانع مي شود. اين روش جديدي براي به دام انداري الكترونها در محيط پلاسمايي است. اين ايده ما را به ياد "شيطانك ماكسول(Maxwell's Demon)" مي اندازد كه مي گفت فرض كنيد يك ظرف را با تيغه اي به دو قسمت تقسيم مي كنيم و يكطرفش را تا نصف از گاز پر مي كنيم. موجود هوشياري را در جلوي سوراخ بين دو نصفه ي ظرف قرار مي دهيم و او فقط مولكولهاي پرسرعت را انتخاب و به سمت ديگر هدايت مي كند. اين آزمايش نظري عملا غير قابل اجراست اما در اينجا با احتساب اينكه مقداري گرما هدر مي رود مي توان الكترونها را به دقت تفكيك كرد. (مثل همان كاري كه شيطانك جلوي دريچه در آزمايش ذهني ماكسول مي كرد!) قصه اينگونه است كه در يك راكتور گداخت بنام توكامك، محققان ميدان مغناطيسي براي نگه داري پلاسما در يك محل خاص بكار مي برند. يعني پلاسما را (كه مجموعه اي از الكترونهاست) درون ظرفي از جنس ميدان مغناطيسي قرار مي دهند. براي اينكار تعدادي از الكترونهاي پلاسما را در ميدان مغناطيسي مي اندازند كه باعث مي شود اين الكترونها دور حلقه اي شبيه به خانه ي حلزون بچزخند و اين خانه حكم ظرفي را دارد كه درونش پلاسما حبس مي شود. اما اين روش نيازمند اينست كه مقدار بسيار زيادي امواج راديويي به درون پلاسما فرستاده شود كه اين مقدار باعث گرم شدن بسياري از الكترونها و اتلاف گرمايي مي شود. نات فيش (Nat Fisch) از دانشگاه پرينستون (Princeton University) و همكارانش تصميم گرفتند كه انرژي لازم براي ظرف را بجاي اينكه به همه جا بفرستند فقط به يك منطقه ي كوچك بفرستند. اين ايده دو نوع ميدان مي خواهد. اول، يك لايه ي نازك از ميدانهاي الكترومغناطيس نوسان كننده مي خواهد كه بطور عمودي محوطه ي پلاسمايي را نصف مي كند و دوم، يك ميدان مغناطيسي ايستا مي خواهد. الكترونها ترجيح مي دهند كه از ديواره ي قوي و نوساني الكترومغناطيسي فاصله بگيرند بنابراين به عقب برميگردند اما ميدان مغناطيسي روي الكترونهاعمل مي كند و آنها را مجددا به جلو هدايت مي كند(مثل يك درب يكطرفه). نمايي از يك پلاسماي حبس شده در يك توكامك. توضيح كاملتر و واضحتر انست كه فرض كنيد يك الكترون به ديوار نزديك ميشود. ميدان مغناطيسي ايستا كه عمود بر ديوار است باعث مي شود كه الكترون روي مسيري حلزوني شكل به سمت ديوار جلو برود. در نزديكي هاي ديوار فركانس اين چرخش رو به جلو با فركانس نوسان ميدان الكترومغناطيسي ديوار هماهنگ مي شود و باعث مي شود كه الكترونها در جاي مشخصي از مدار چرخششان ناگهاني به سمت داخل كشيده شوند. اين شوت شدگي به سمت ديگر ديواره براي تمام الكترونها در همان جهت وجود دارد. يعني فرقي نمي كند كه الكترون به ديواره از كدام سمت نزديك شود. اگر الكتروني مثلا از سمت ديگر به ديوار نزديك شود، ميدان مغناطيسي ايستايي كه الكترونها را رو به يك سمت هدايت مي كند باعث دوري آن الكترون از ديوار مي شود. بنابراين مي بينيد كه ديوار اينجا مثل شيطانك ماكسول كه به يكسو تفكيك مي كرد عمل مي كند. حالا اين تيم در حال عملي كردن اين ايده هستند تا بتوانند با دو ديوار الكترونها را بين اين دو حبس كنند.

صفحه 1 از 2 12 آخرینآخرین

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •