صفحه 1 از 9 123456789 آخرینآخرین
نمایش نتایج: از شماره 1 تا 10 , از مجموع 85

موضوع: مهندسی شيمی و نفت

  1. #1
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    New مهندسی شيمی و نفت

    مهندسی شيمی و نفت
    كروژن چيست ؟

    کروژنها مواد آلی رسوبی ***نده‌ای هستند که در حلالهای مواد آلی غیرمحلول هستند و دارای ساختمان پلیمری می‌باشند. مواد آلی ***نده‌ای که در حلالهای آلی محلول باشند، بیتومن نامیده می‌شوند. ولی کروژنها را می‌توان توسط اسیدهایی مانند hcl و hf از سنگهای رسوبی باز پس گرفت. همچنین ممکن است توسط روش دانسیته و استفاده از مایعات سنگین بتوان کروژن را جد اساخت. چون کروژن نسبت به کانیهای دیگر سبک بوده و وزن مخصوص کمتری دارد.

    روشهای مطالعه کروژن
    تمرکز کروژن بوجود آمده را می‌توان با میکروسکوپهای با نور عبوری یا انعکاسی مورد بررسی قرار داد و هویت بیولوژیکی و منشا و نحوه بوجود آمدن اولیه آنها را مطالعه نمود. همچنین با استفاده از میکروسکوپهای با نور ماورای بنفش و مشاهده کردن رنگهای فلورسانس ، اجزا اصلی تشکیل دهنده کروژنها را مشخص ساخت و از اسپکتروسکوپهای مادون قرمز نیز جهت بررسی ترکیب شیمیایی و ساختمانی کروژنها کمک گرفت.

    تجزیه کروژن
    مولکولهای بزرگ و پیچیده کروژن به سختی قابل تجزیه بوده ولی در اثرحرارت دادن در اتمسفر به ذرات کوچکتری شکسته می‌شوند که بعدا آنها را می‌توان توسط دستگاههای کروماتوگرافی گازی و اسپکترومترهای جرمی تجزیه نمود.
    تغییرشکل کروژنهای مدفون در اثر افزایش حرارت تبدیل کروژنها به نفت و گاز فرایندی است که به درجه حرارت بالایی نیازمند است. برای شروع تبدیل مواد حیوانی و گیاهی آلی به هیدروکربنها درزیرفشار 1-2 کیلومتر رسوب ، حرارتی درحدود 70-50 درجه سانتیگراد لازم است. درجه حرارت نهایی برای این تبدیل که بلوغ یا مچوراسیون نامیده می‌شود. حتی به بیش از 150 درجه سانتیگراد می‌رسد. لازم به ذکر است که در نواحی با گرادیان زمین گرمایی بیشتر ، به عنوان مثال نواحی با جریان حرارتی بالا ، امکان دارد مواد آلی درعمق کمتری به درجه بلوغ (مچوریتی) برسند.

    تاثیر فشار بر ساختمان کروژنها
    با افزایش حرارت در اثر افزایش بار رسوبی فوقانی عاملهای باندی c- c مولکولهای آلی موجود در کروژن شکسته می‌شوند و گاز نیز در این مرحله تشکیل می‌شود. بنابراین با بالا رفتن حرارت همگام با افزایش فشار ، باندهای c- c بیشتری در کروژن و مولکولهای هیدروکربنی که قبلا تشکیل شده بودند، شکسته می‌شود. این شکستگی راهنمایی برای تشکیل هیدروکربنهای سبک تر ، از زنجیره‌های هیدروکربنی طویل و از کروژن است. جدا شدن متان و دیگر هیدروکربنها سبب می‌شود که کروژن باقیمانده نسبتا از کربن غنی شود. زیرا در آغاز ، کروژنهای تیپ 1و 2 نسبت h/c برابر 1.7 و 1.3 دارند.

    دیاژنز کروژن
    شروع دیاژنز با درجه حرارت 70-60 صورت می‌گیرد و ازدیاد درجه حرارت تا زمانی که نسبت h/c =0.6 و نسبت o/c =0.1 باشد تا حدود 150 درجه سانتیگراد ادامه می‌یابد. در درجه حرارتهای بیشتر تمام زنجیره‌های هیدروکربنی طویل تقریبا شکسته می‌شوند و بنابراین باقیمانده آن بطور کلی تنها از گاز متان (گازخشک) می‌باشد و ترکیب کروژن تدریجا به سمت کربن خالص میل خواهدکرد. ( h/c=0 )

    محاسبه مچوریتی
    محاسبه مچوریتی (به بلوغ رسیدن) سنگ مادر برای پیشگویی اینکه چه سنگهای مادری برای تولید نفت بقدر کافی رسیده هستند و همچنین جهت محاسبه کامپیوتری و طرح ریزی بکار می‌رود که اینها یک قسمت مهم از آنالیز حوضه برای اکتشافات نفت می‌باشند و مهمترین بهره از این محاسبات تعیین تاریخچه فرونشینی است که از ثبت چینه شناسی و تخمین گرادیان زمین گرمایی مشتق می‌شود. بنابراین تاریخچه فرونشینی تابعی از زمان زمین شناسی می‌باشد.

    انواع کروژن
    بطور کلی سه نوع کروژن قابل تشخیص است. وجه تمایز این سه نوع کروژن به نوع ماده آلی تشکیل دهنده و ترکیب شیمیایی آن بستگی دارد.

    کروژن نوع اول :
    این نوع کروژن دارای منشا جلبکی بوده و نسبت هیدروژن به کربن موجود در آن از سایر کروژنها بیشتر می‌باشد ( نسبت هیدروژن به کربن حدود 1.2 تا 1.7 است ).
    کروژن نوع دوم :
    کروژن نوع دوم یا لیپتینیک‌ها نوع حد واسط کروژن محسوب می‌شود. نسبیت هیدروژن به کربن نوع دوم ، بیش از 1 می‌باشد. قطعات سر شده جلبکی و مواد مشتق شده از فیتو پلانکتونها و زئوپلانکتونها متشکلین اصلی (کروژن ساپروپل) کروژن نوع دوم است.
    کروژن نوع سوم :
    کروژن نوع سوم یا هومیک دارای نسبت هیدروژن به کربن کمتر از 84 % می‌باشد. کروژن نوع سوم از لیگنیت و قطعات چوبی گیاهان که در خشکی تولید می‌شود به وجود می‌آید.

    مراحل تشکیل کروژن
    مواد آلی راسب شده در حوضه‌های رسوبی با گذشت زمان در لابه‌لای رسوبات دفن می‌شود. ازدیاد عمق دفن‌شدگی با افزایش فشار و دمای محیط ارتباط مستقیم دارد. تی‌سوت ( 1977) تحولات مواد آلی در مقابل افزایش عمق را تحت سه مرحله به شرح زیر تشریح می‌کند :

    مرحله دیاژنز
    تحولات مواد آلی در مرحله دیاژنز در بخشهای کم عمق‌تر زیر زمین و تحت دما و فشار متعارف انجام می‌شود. این تحولات شامل تخریب بیولوژیکی توسط باکتریها و فعل و انفعالات غیر حیاتی می‌باشد. متان ، دی‌اکسید کربن و آب از ماده آلی جدا شده و مابقی به صورت ترکیب پیچیده هیدروکربوری تحت عنوان کروژن باقی می‌ماند. در مرحله دیاژنز محتویات اکسیژن ماده آلی کاسته می‌شود ولی نسبت هیدروژن به کربن ماده‌ آلی کم و بیش بدون تغییر باقی می‌ماند.
    تاثیر مرحله دیاژنز در بوجود آمدن هیدروکربنها :
    در اوائل مرحله دیاژنز مقداری از مواد جامد از قبیل خرده فسیلها و یا کانیهای کوارتز و کربنات کلسیم و … ، ابتدا حل شده بعدا از آب روزنه‌ای اشباع گشته ، سپس به همراه سولفورهای آهن - سرب و روی و مس و غیره دوباره رسوب می‌کنند. در این مرحله مواد آلی نیز به سوی تعادل می‌روند. یعنی اول در اثر فعالیت باکتریها مواد آلی متلاشی شده و بعدا همزمان با سخت شدن رسوبات (سنگ شدگی) این مواد نیز پلیمریزه شده و مولکولهای بزرگتری را تشکیل داده سپس به تعادل می‌رسند که در این حالت تعادل آنها را کروژن می‌نامند.
    مرحله کاتاژنز
    تحولات مواد آلی در مرحله کاتاژنز در عمق بیشتر تحت دمای زیادتر صورت می‌گیرد. جدایش مواد نفتی از کروژن در مرحله کاتتاژنز به وقوع می‌پیوندد. در ابتدا نفت و سپس گاز طبیعی از کروژن مشتق می‌شود. نسبت هیدروژن به کربن ماده آلی کاهش یافته ولی در مقدار اکسیژن به کربن تغییر عمده‌ای صورت نمی‌گیرد.
    تاثیر مرحله کاتاژنز در بوجود آمدن هیدروکربنها : در این مرحله مواد آلی تغییرات زیادی پیدا می‌کنند و حین تغییر وضع مداوم مولکولی در کروژنها در ابتدا نفتهای سنگین ، بعدا نفتهای سبک و در آخر گازهای مرطوب تولید می‌شوند. در آخر مرحله کاتاژنز تقریبا تمامی شاخه‌های زنجیری هیدروکربنها از مولکول کروژن جدا شده و مواد آلی باقیمانده در مقایسه با زغال سنگها از نظر درجه بلوغ ، شبیه به آنتراسیت بوده و ضریب انعکاسی بیش از 2% دارند.
    مرحله متاژنز
    تحولات ماده آلی در مرحله متاژنز تحت دما و فشار بالاتر نسبت به مراحل قبلی انجام می‌شود. بقایای هیدروکربن بخصوص متان از ماده آلی جدا می‌شود. نسبت هیدروژن به کربن کاهش یافته ، به نحوی که در نهایت کربن به صورت گرافیت باقی خواهد ماند. تخلخل و تراوایی سنگ در این مرحله به حد قابل چشم پوشی می‌رسد.
    تاثیر مرحله متاژنز در بوجود آمدن هیدروکربنها :
    در مرحله متاژنز و متامورنیسم رسوبات در عمق بیشتر و تحت تاثیر حرارت و فشار بیش از حد قرار دارند. در این مرحله کانیهای رسی ، آب خودشان را از دست داده و در نتیجه تبلور مجدد در بافت اصلی سنگ تغییرات بوجود می‌آید. در این مرحله کروژن باقی مانده (موادآلی باقی مانده) تبدیل به متان و کربن باقیمانده می‌شود. این مواد را می‌توان قابل قیاس با تبدیل زغال سنگ به آنتراسیت دانست که ضریب انعکاسشان تا 4% می‌رسد. بالاخره در آخراین مرحله باقیمانده مواد آلی که به صورت کربن باقی مانده در آمده بود، تبدیل به گرافیت می‌شود.

    رسیدگی کروژن
    نفت و گاز در مرحله کاتاژنز از کروژن نیمه رسیده مشتق می‌شوند. اشتقاق هیدروکربور از کروژن نارس امکان پذیر نیست. به دنبال رسیدگی کروژن در ابتدا نفت و سپس گاز طبیعی از کروژن جدا می‌شود. هنگامی که کروژن کاملا برسد دیگر نفت و گازی از آن به وجود نمی‌آید. رسیدگی کروژن به دما ، زمان و احتمالا فشار بستگی دارد.
    تولید عمده نفت از کروژن در دمای 60 تا 120 درجه سانتیگراد صورت می‌گیرد. تولید عمده گاز از کروژن در دمای 120 تا 225 درجه سانتیگراد است. کروژن در دمای بالاتر از 230 درجه سانتیگراد کلیه مواد هیدروکربوری خود را از دست می‌دهد و تنها به صورت گرافیت باقی می‌ماند.

  2. #2
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    مهندسی نفت مخازن نفتي
    در زمین شناسی نفت یکی از تخصصهای مهم که توسط زمین شناسان و مهندسین حفاری بسیاری مورد توجه قرار گرفته است، نحوه استخراج نفت از چاه می‌باشد
    . که در این رابطه ابتدا انرژی طبیعی موجود در مخزن را نسبتا به نوع سنگ ذخیره (ماسه‌ای - کربناتی) مشخص می‌نمایند و سپس نسبت به برداشت کامل از چاه با بکار بردن روشهای پر هزینه و نیز تزریق بخار یا گاز نظر می‌دهند.

    انرژی موجود در مخازن
    در غالب مخازن نفت و گاز موجود در مخازن ، تحت فشار بخصوص آن مخزن قرار دارند. یعنی وقتی که چاهی در یک مخزن نفتی حفر می‌شود در نتیجه فشار موجود در چاه ، نفت بالای چاه و حتی تا سطح زمین نیز می‌تواند بالا بیاید که به اینگونه مخازن در اصطلاح مخازن خود تولید می‌گویند.

    فشار مخازن نفتی
    آب و نفت از نظر حجمی یک ضریب بالنسبه پایینی با همدیگر دارند، بدین جهت هنگام استخراج نفت ، فشار چاه به سرعت پایین می‌آید و هر قدر مخزن کوچکتر باشد این افت فشار سریعتر صورت می‌گیرد و از این افت فشار می‌توانیم اطلاعات هم در مورد اندازه مخزن و ارتباط داخلی آن در طول بهره برداری تهیه نماییم.

    گاز جهنده
    در این رابطه چون گاز نسبت به نفت قدرت گسترش زیادی دارد در نتیجه کاهش فشار مخزن ممکن است گاز مایع را به حالت گازی شکل در آورد و گاز حل شده در نفت از حالت محلول خارج می‌شود. لذا حجم قسمت گاز افزایش می‌یابد و این حالت به نگهداری و تنظیم فشار چاه در موقع استخراج به مدت طولانی کمک می‌کند به این گاز اصطلاحا گاز جهنده می‌گویند.

    سفره تحت فشار
    فشار آب را در مخازن بزرگ بیشتر نگهداری می‌کنند، چون حجم بزرگتری دارند و آب در بهترین وضعیت حالتی است که در مخزن تحت فشار باشد که به آن اصطلاحا سفره تحت فشار می‌گویند.

    آبهای جهنده
    در طول بهره برداری از مخازن نفتی فشار ثابتی خواهیم داشت. زیرا آبهای جدید جای نفت استخراج شده را گرفته و این فشار را تأمین می‌کنند که به آنها در اصطلاح آبهای جهنده می‌گویند. از وجود آب جهنده برای خنثی کردن افت فشار در مخازن نفتی استفاده می‌کنند و در صورت کمبود آن از طریق چاههای تزریقی ویژه آب یا گاز به داخل مخازن تزریق می‌کنند و اگر هیچگونه انرژی جهت تولید فشار در مخزن نفتی موجود نباشد در آنصورت باید نفت به بیرون پمپاژ شود.

    نفوذپذیری در مخازن نفتی
    اگر چند نوع فاز گازی یا مایع در سنگهای ذخیره وجود داشته باشد، بطوری که قبلا شرح داده شد، نفوذ پذیری از اندازه خلل و فرج و تخلخل تبعیت نخواهد کرد بلکه به میزان ارتباط سایر فازها نیز بستگی خواهد داشت. نفوذ پذیری مؤثر در واقع نفوذ پذیری یک فاز در ارتباط با سایر فازها را برای ما نشان می‌دهد. مثلا اگر در خلل و فرج 40 درصد آب و 60 درصد نفت موجود باشد در آنصورت نفوذ پذیری نفت کمتر از زمانی خواهد بود که تمامی خلل و فرج از نفت پر شود، یعنی 100 درصد اشباع از نفت باشد.

    ارتباط بین آب و نفت استخراجی از مخازن
    اگر در یک مخزن نفتی کمتر از 40 تا 50 درصد آب باشد (یعنی درجه اشباع شدگی نفت بین 50 تا 60 درصد باشد) در آنصورت از مخزن تنها نفت استخراج می‌گردد. اگر درصد اشباع آب بین 45 تا 85 درصد باشد در آن صورت نفت و آب استخراج می‌شوند. و اگر درصد اشباع آب بین 85 تا 100 درصد باشد در آنصورت فقط از مخزن آب استخراج می‌گردد.

    دلیل این حالتها
    چون آب سطح کانیها را خیلی راحتتر از نفت خیس می‌کند، بطوری که ممکن است بیشتر از 30 الی 40 درصد آب در اطراف دانه‌های کانیها موجود باشد و وقتی که مقدار آن بین 40 الی 50 درصد و یا بیشتر برسد در آنصورت نمی‌توانیم به مدت طولانی فاز پیوسته نفت را داشته باشیم و قطرات نفت همراه با آب می‌توانند جریان پیدا کنند و اگر مقدار نفت کم باشد در اینصورت نفت بصورت قطرات کوچک در خلل و فرج سنگ ذخیره باقی خواهد ماند و آب از کنار آن عبور خواهد نمود.

    سنگهای ذخیره کربناتی
    از سنگهای ذخیره نفت و گاز از نوع کربناتی تا زمانی که درجه اشباع نفتی بین 30 الی 40 درصد و بیشتر باشد چون چسبندگی گاز کمتر است و خیلی راحت از کنار آب عبور می‌کنند، لذا می‌توان فقط گاز استخراج نمود. و در درجه بالاتری از اشباع شدگی ، گاز همراه نفت جریان یافته و در درجه اشباع نفتی حدود 55 درصد ، نفت و گاز نفوذ پذیری مشابهی خواهند داشت.

  3. #3
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    منشا تشکيل نفت
    قبلا در مورد منشا نفت دو نظریه ارائه می‌شد:
    تشکیل نفت از منشا آلی و از منشا غیر آلی. دلایل ارائه شده در مورد منشا غیر آلی ( معدنی) نفت بسیار ضعیف بوده و امروزه باطل شناخته می‌شود. همه محققین این عقیده را دارند که کانسارهای بیتومن‌های طبیعی از عناصر آلی و در داخل تشکیلات رسوبی بوجود می‌آیند. البته تشکیل متان به صورت معدنی که در فضا و در چندین سیاره دیگر یافت می‌شود استثنایی در این مورد است. معمولا متان معدنی نمی‌تواند تشکیل ذخایر عمده گازی را بدهد.

    حمل و ته نشست مواد آلی در دریا
    وقتی که نفت از مواد آلی مشتق شد مهم فهمیدن چگونگی ته نشست آن مواد در داخل رسوبات دریایی است. در هر سال حدود 5.110 تن مواد آلی در اقیانوسهای جهان تولید می‌شوند که اکثریت آنها در داخل رسوبات دریایی مدفون می‌شوند. مواد حاصل از فرسایش سنگها در خشکی به داخل اقیانوسها حمل می‌شوند و در مناطق ساحلی خصوصا در دلتاهای رودخانه‌ای بیشتر از سایر جاها رسوب می‌کنند. همچنین مقدار مشابهی از مواد گیاهی حاصل از خشکی نیز در داخل اقیانوسها انباشته می‌شوند.

    فیتوپلانکتونها
    بیشتر فرآوردهای بیولوژیکی تا اعماق 50 - 30 متری اقیانوسها وجود دارند و تمامی رویش فیتوپلانکتونها در اعماقی که نور خورشید جهت انجام فرآیند فتوسنتز به آنجا می‌رسد، صورت می‌گیرد (اعماق 150 - 100 متری). فیتوپلانکتونها تولید کننده‌های مواد غذایی برای سایر موجودات اقیانوس هستند. زئوپلانکتونها از فیتوپلانکتونها تغذیه کرده بنابراین ازدیاد تنها در جاهایی صورت می‌گیرد که تولیدات فیتوپلانکتونی زیاد باشد موجوداتی که می‌میرند، به اعماق دریا فرو می‌روند و ممکن است در اثر پوسیده شدن آزاد شدن مواد مغذی گردند که این چرخه ، در اعماق زیاد صورت می‌گیرد.

    آب
    در نواحی قطبی خصوصا در جاهای سرد ، آبهای با دانسیته زیاد به اعماق فرو رفته و به سمت عرضهای جغرافیایی پایین جاری می‌شوند. در نواحی با بادهای خشکی غالب ، به عنوان مثال در کرانه‌های غربی قاره‌ها چاه‌های آرتزین قوی وجود دارند که حاوی آب غنی از مواد مغذی به مانند اعماق اقیانوس‌ها هستند که این امر تهیه مواد اساسی خصوصا تولید مواد اولیه آلی با درصد بالا را موجب می‌شوند. بهترین مثال در این مورد ساحل غربی آمریکای جنوبی می‌باشد.

    انرژی نفت
    انرژی موجود در نفت که ما امروزه از آن استفاده می‌کنیم قبلا به صورت انرژی خورشیدی ذخیره شده بود. در عمل فتوسنتز دی‌اکسید کربن و آب با انرژی کم به هیدرات کربن با انرژی زیاد تبدیل می‌گردد (مانند گلوکز)
    CO2 + H2O → CH2O + O2
    که در این رابطه CH2O هیدرات کربن مانند گلوکز است. این انرژی می‌تواند مستقیما توسط موجودات برای عمل تنفس استفاده شود که در اثر فرآیند معکوس ، هیدراتهای کربن مجددا به دی‌اکسید کربن و آب شکسته می‌شوند که اکسیداسیون 100 گرم گلوکز 375 کیلوکالری انرژی آزاد می‌کند.

    فتوسنتز و ذخیره انرژی در مواد آلی
    مقداری از انرژی انباشته شده در گیاهان در طول عمل فتوسنتز در اثر تنفس تلف می‌شوند و هر یک از تولیدات هیدرات کربن که در سوختن استفاده نمی‌شود، می‌تواند بصورت گلوکز یا سلولز در دیواره سلولی ذخیره شود. فتوسنتز همچنین منبع بیوشیمیایی برای سنتز لیپدو پروتئین است.
    نیتروژن و فسفر و بسیاری از عناصر واسطه برای تشکیل مواد آلی (پروتوپلاسم) در زندگی موجودات ضروری می‌باشد و کمبود این مواد در دریا باعث مرگ تعداد بسیاری زیادی از جانداران می‌شود که این عمل به صورت انعکاسی و زنجیره‌ای توسط SH2 مسموم کننده حاصل از اجساد جانداران مرده محیط انجام پذیرد. باید گفت که پروتئینها ملکولهای پیچیده بزرگی هستند که از آمینو اسیدهای متراکم ساخته شده‌اند.
    مانند گلیسین به فرمول : CH2NH2COOH
    مواد زنده
    اجزای آلی
    هیدراتهای کربن
    نور خورشید
    پروتوپلاسم
    پروتئین
    سلولز
    زئوپلانکتون
    لیپید
    گلوکز
    مواد مغذی
    نشاسته
    فسفر
    نیتروژن و مهمترین مواد آلی تشکیل دهنده نفت جلبکهای پلانکتونیک (پلانکتونی) ، مهمترین شرکت کننده‌هایی از مواد آلی هستند که در تشکیل نفت دخالت دارند، در این میان دیاتومه‌ها مهمترین آنها می‌باشند چون دارای اسکلت سیلیسی بوده و بخش آلی آنها شامل تقریبا 31 درصد هیدرات کربن و 48 - 24 درصد پروتئین و 15 - 2 در لیپید است.
    همچنین دینوفلاگلاتها Dinoflagellaies ، ترکیب مشابه‌ای با اینها دارند.

    زئوپلانکتونها Zeoplanciones
    زئوپلانکتونها مواد آلی غنی از لیپید را می‌سازند و مشتق شده‌اند از :
    رادیولارها (Radiolarites ) :

    با پوسته سیلیسی ، بخش وسیع ، بخصوص در آبهای نواحی گرمسیر.
    فرامینیفرها (Foraminiferes) :

    با پوسته کربنات کلسیم‌دار مانند (گلوبیژرین).
    پتروپودها (Detropodes) :

    دارای عضو پا مانند هستند که به صورت زائده نرم آویزان است و حاوی پوسته کربناتی هستند.
    در زنجیره غذایی این زئوپلانکتونها ، توسط سخت پوستان خورده می‌شوند که آنها نیز به نوبه خود توسط ماهیها خورده می‌شوند. در زنجیره غذایی طبیعی هر بند را یک سطح تروپیک می‌نامند و هر بند در طول کاهش زنجیره تراکم زیستی ضریبی از 10 دارد.
    دلتاها و تشکیل نفت
    در مردابهای ساحلی خصوصا دلتاها ، تولیدات زیاد مواد آلی سبب رویش و شکل گرفتن گیاهان و درختان می‌شود که در بقایای این گیاهان بزرگ امکان دارد تورب تشکیل شده و با قرار گرفتن در عمق بیشتر و دگرگون شدن به لیگنیت و زغالهای بیتومینوز تبدیل گردد که چنین ته نشستهایی یک منبع ذخیره نفت و گاز نیز می‌باشند. همچنین مواد گیاهی شامل چوب که به صورت شناور در رودخانه‌ها حمل می‌شوند در محیطهای دلتایی نزدیک سواحل پس از کاسته شدن سرعت آب ته نشین شده و به ته آب فرو می‌روند.

    اسید هومیک C2OHOO6
    فرآورده‌های آب رودخانه حاوی مواد غذایی معدنی و همچنین شامل مقدار قابل ملاحضه‌ای مواد آلی می باشند که از این مواد مخصوصا اسید هومیک و مواد مشابهی که در اثر تجزیه مواد گیاهی حاصل می‌شوند می‌توان نام برد. اسید هومیک به صورت ضعیف در آب حل می‌شود و نقش قابل ملاحظه‌ای را در بوجود آوردن منابع هیدروکربنی عهده‌دار است.

  4. #4
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    نفتگير دياپيري



    نفتگیرهای دیاپیری حاصل نفوذ صعودی رسوبات با وزن مخصوص کمتر به درون لایه‌های بالاتر می‌باشد. اکثر نفتگیرهای دیاپیری به واسطه نفوذ نمک به درون لایه‌های بالاتر بوجود آمده است. مواد رسی تحت فشار نیز ممکن است به سمت بالا صعود کنند. وزن مخصوص نمک 2.03 گرم بر سانتیمتر مکعب می‌باشد. رسها و ماسه‌های تازه دفن شده دارای وزن مخصوص کمتر از نمک بوده که با افزایش عمق دفن شدگی متراکم می‌شود قطعه‌های بین دانه‌ای آن کاهش یافته و در نهایت به وزن مخصوص آن افزوده می‌شود.
    وزن مخصوص رسوبات تازه دفن شده در عمق 800 تا 1200 متری از نمک بیشتر است. نمک در این مرحله سعی دارد به طرف لایه‌های بالایی حرکت کند. حرکت صعود کننده نمک ممکن است با فعالیت تکتونیکی همراه شود. صعود نمک به بالا ممکن است سبب خم شدگی لایه‌های فوقانی شده و یا کاملا لایه‌های بالایی را بشکافد. نمک بعضی مواقع به سطح زمین رسیده و در نواحی خشک سبب تشکیل گنبد نمکی می‌شود.

    تاثیرهای ناشی از حرکت صعود کننده نمک به صورت گوناگون از قبیل برگشتگی لایه‌های کناری و مجاور توده نمک ، گسل خوردگی ، ایجاد بلوکهای مثلثی و تکرار این مورد در بالها و در بخش فوقانی توده نمک بوده که در نهایت سبب تشکیل مخازن نفت می‌شود. نفتگیرها ممکن است قطع قطع و یا تکرار شده و حداکثر تا 10 نفتگیر در مجاورت توده نمک تشکیل شود.
    ساختمانهای گنبد سنگی
    رسوبات تبخیری غالبا در حوزه‌های بسته ، گرم و در نواحی که مقدار تبخیر به مراتب از جایگزینی آب ورودی بیشتر باشد، تشکیل می‌شود. رسوبات تبخیری در بسیاری نقاط به صورت بین لایه‌ای و چرخه‌ای همراه سنگهای آهکی ، فسیلهای قرمز و سبز نیز یافت شده‌اند. هالیت ، ایندریت و ژیپس تشکیل دهندگان اصلی رسوبات تبخیری می‌باشند. سن رسوبات تبخیری از انیفراکامبرین به بعد می‌باشد. لایه تبخیری دفن شده ممکن است به صورت ستونهایی با ابعاد مختلف صدها و یا هزاران متر را از زیر زمین به سمت بالا طی کند.
    نفوذ توده های نمکی تغییر شکل، تغییر شیب. گسل خوردگی، چین خوردگی، واریختگی و غیره لایه‌ها را سبب شده و این امر در تشکیل گروهی از مخازن نفتی نقش بسزایی داشته است. حرکت رو به بالای سنگ منشا ناشی از دیاپیرسیم می‌توانند تا آن حد رسوبات را بالا آورد که رسوبات مذکور در معرض تخریب و فرسایش فیزیکی قرار گیرند. حرکت بالاآورنده سنگهای منشا توسط گنبدهای نمکی نیز سبب نازک شدگی آن سنگها شد. که ممکن است با کاهش پتانسیل گاززایی و یا نفت خیزی آنها همراه شود. علاوه بر این ، حرکت روبه بالا سبب کاهش عمق دفن شدگی رسوبات نیز می‌شود.

    پوش سنگ گنبدهای نمکی
    پوش سنگ متشکل از ایندریت ، ژیپس ، آهک ، دولومیت و گاهی سولفور می‌باشد. ایندرت بخش اصلی پوش سنگ را شامل شده و بطور مستقیم بر روی توده اصلی قرار می‌گیرد. بر روی ایندریت محدوده مختلط از ژیپس و ایندریت قرار داشته و ممکن است مقداری کلسیت نیز در روی محدود حد واسط متمرکز شود. ضخامت متوسط پوش سنگ حدود 100 الی 130 متر است.
    امروزه نظر بر این است ایندریت و آهک در واقع مواد غیر محلول و همراه نمک بوده که به تدریج با بالا آمدن نمک بر سطح آن متمرکز می شود. گاهی پوش سنگ به طرف به نحوی آویزان می شود. آویزان شدگی پوش سنگ به عواملی نظیر تغییر محور نمک در حین رشد ، افزایش وزن پوش سنگ ، فشار صعود کننده تحت نمک و گرایش آن به کنار توده نفوذی و انحلال توسط چرخش آب سنت داده می‌شود.

    منشا گنبدهای نمکی
    تئوری منشا ولکانیگی برای گنبدهای نمکی بر اساس این تئوری نمک حاصل جدایش رسوب از گازهای توده‌های نفوذی آذرین عمیقتر بوده که ، پس از این جدایش ، حرکت صعود کننده خود را آغاز کرده است. این نظریه بعدها رد شد. زیرا هیچگونه آثار نفوذی ماگما در زیر توده نفوذی نمک مشاهده نشد.

    نظریه نمک حاصل از آبهای زیرزمینی
    نمک حاصل رسوب از آب زیرزمینی به خصوص در کنار ، گسلها بوده و نفوذ توده نمک حاصل رشد بلورهای نمک آب زیرزمینی است. این نظریه هم به دلیل عدم توانایی آبهای زیرزمینی در تامین مقدار نمک مورد نیاز بی‌اعتبار شد.

    تئوری جریان مواد پلاستیکی
    امروزه نظر بر این است که نفوذ توده نمک بر اساس تئوری جریان مواد پلاستیکی ارائه شده توسط نتلتون استوار می‌باشد. بر اساس این تئوری ، نمک و رسوبات هر دو حالت مایع بسیار غلیظ با خاصیت حرکت مواد پلاستیکی را دارا هستند. وزن مخصوص نمک حدود 2.02 بوده و متر آن با افزایش عمق تغییری پیدا نمی‌کند. در اعماق زیاد با خاصیت پلاستیکی و وزن مخصوص کمتر از رسوبات هم عرض خود به حالت بحرانی رسیده و تحت تاثیر عواملی به شرح زیر از حالت بحرانی خارج شده و شروع به صعود به نواحی کم فشارتر می کند:

    ترکیب ، مشخصات ، ضخامت و ارتباط چینه‌ای سازند اصلی نمک
    دمای تشکیل نمک که بطور متوسط به ازای هر 100 متر عمق ، 3 درجه سانتیگراد افزوده می‌شود.
    فشار وارده بر نمک که به ازای هر فوت یک پوند بر اینچ افزوده می‌شود. آب محتوای نمک و سنگهای مجاور که تاثیر شدیدی بر حالت بحرانی نمک از حالت سکون به حرکت را دارا می‌باشد.
    تجمع نفت در نفتگیرهای گنبدهای نمکی تجمع نفت در پوش سنگ ، لایه‌های ماسه‌ای چین خورده فوقانی ، لایه‌های ماسه‌ای مجاور موثر از بالا آمدگی نمک و داری شیب زیاد و حاصل گسل صورت می‌گیرد. اینگونه مخازن بطور کلی دارای وسعت کم و کوچک بوده ولی می‌تواند دارای ستون نفت زیاد باشد. دستیابی به این مخازن مستلزم حفاری دقیق و نشانه روی صحیح به خصوص در نواحی آویزان شده می‌باشد. فشار در مقایسه با عمق گاهی غیر عادی و بسیار زیاد است. نفوذ گاز به درون لایه‌های مجاور به خصوص در سازنده‌‌های کم عمقتر حاوی نفت سنگین متداول می‌باشد.

  5. #5
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    شيمي نفت
    !!



    تاریخچه :
    این ماده را از قرنها پیش بصورت گاز در آتشکده و یا به فرم قیر (کاده ای که پس از تبخیر مواد فرار یا سبک نفت از آن باقی می‌ماند) می‌شناخته‌اند یا بطوری که در کتب مقدس و تاریخی اشاره شده است که در ساختمان برج بابل از قیر استفاده گردیده و کشتی نوح و گهواره موسی نیز به قیر اندوده بوده است. بابلی‌ها از قیر بعنوان ماده قابل احتراق در چراغها و تهیه ساروج جهت غیر قابل نفوذ نمودن سدها و بالاخره جهت استحکام جاده‌ها استفاده می‌کرده‌اند.
    مدت زمان مدیدی ، مورد استعمال نفت فقط برای مصارف خانگی و یا به عنوان چرب‌کننده‌ها بود، اما از آغاز قرن شانزدهم میلادی روز به روز موارد استعمال آن رو به افزایش نهاد تا اینکه در سال 1854 دو نفر داروساز وجود یک فراکسیون سبک قابل اشتعال را در روغن زمینی تشخیص دادند و همچنین به کمک تقطیر ، مواد دیگری بدست آوردند که برای ایجاد روشنایی بکار می‌رفت. بر اساس این کار آزمایشگاهی بود که بعدا دستگاههای عظیم تصفیه نفت طرح‌ریزی و مورد بهره برداری قرار گرفت. صنعت نفت در آتازونی در سال 1859 شروع شد.

    تاریخچه استخراج نفت در ایران :
    صنعت نفت ایران نیز از سال 1908 پس از هفت سال تفحص مکتشفین و کشف نفت در مسجدسلیمان واقع در دامنه جبال زاگرس ، پا به عرصه وجود گذاشت.

    نفت خام :
    امروزه چاههای نفت متعددی در سراسر جهان وجود دارد که از آنها نفت استخراج می‌کنند و به نفتی که از چاه بیرون کشیده می‌شود، نفت خام می‌گویند. نفت خام را تصفیه می‌کنند، یعنی هیدروکربنهای گوناگونی را که نفت خام از آنها تشکیل شده است از یکدیگر جدا می‌کنند که به این کار پالایش نفت می‌گویند و در پالایشگاهها این کار انجام می‌شود. نفت منبع انرژی و سرچشمه مواد اولیه بسیاری از ترکیبات شیمیایی است و این دور از عوامل اصلی اقتصادی مدرن بشمار می‌رود. در صنایع جدید از ثروت بیکران و تغییر و تبدیل مواد خام اولیه آن بی‌اندازه استفاده می‌شود.

    تشکیل نفت :
    نحوه پیدایش نفت دقیقا تشخیص داده نشده و در این مورد فرضیات گوناگونی پیشنهاد شده است. برخی از این تئوریها ، مربوط به مواد معدنی و بعضی دیگر مربوط به ترکیبات آلی می‌باشد.

    تشکیل نفت از مواد معدنی :
    اساس این فرضیه بر این است که کربورهای فلزی تشکیل شده در اعماق زمین در اثر تماس با آب‌هایی که در زمین نفوذ می‌نماید، ابتدا ایجاد هیدروکربورهای استیلنی با رشته زنجیر کوتاه می‌کند. سپس هیدروکربورهای حاصل در اثر تراکم و پلیمریزه شدن ایجاد ترکیبات پیچیده و کمپلکس را می نماید که اغلب آنها اشباع شده است.

    تشکیل نفت از مواد آلی :
    بر اساس این فرضیه تشکیل نفت را در اثر تجزیه بدن حیوانات در مجاورت آب و دور از هوا می‌دانند. زیرا در این شرایط ، قسمت اعظم مواد ازته و گوگردی تخریب و مواد چرب باقیمانده در اثر آب ، هیدرولیز می‌گردد. اسیدهای چرب حاصله ، تحت اثر فشار و درجه حرارت با از دست دادن عوامل اسیدی تولید هیدروکربورهائی با یک اتم کربن کمتر می‌نماید.
    "
    انگلر Engler" از تقطیر حیوانات دریائی توانسته است مواد نفتی را تهیه نماید و با توجه به خاصیت "چرخش نوری" مواد نفتی که علت آن وجود گلسترین است (ماده ای که در بدن حیوانات وجود دارد) این فرضیه بیان و مورد تایید شده است. در صورتی که فرضیه های دیگر که مبتنی بر اساس مواد معدنی در تشکیل نفت می‌باشد، هیچگونه توضیح و دلیل قانع کننده ای در مورد این ویژگی نمی‌تواند بیان نماید.
    همچنین نفت می‌تواند از تجزیه گیاهان تولید گردد. در این حالت ، خاصیت چرخش نور را به علت وجود ترکیب مشابه گلسترین یعنی پلی استرولها می‌دانند."مرازک Mrazec" ، میکروبها را در این تغییر و تبدیل موثر می‌داند. تئوری تشکیل نفت بر مبنای مواد آلی ، فعلا بیشتر مورد قبول می‌باشد و اختلاف قابل ملاحظه‌ای را که بین ژیزمان‌ها (منابع نفتی) مشاهده می‌گردد، بعلت شرایط و عوامل مختلف تشیکل ژیزمان‌ها می‌دانند.

    مواد سازنده نفت خام :
    مواد سازنده نفت از نظر نوع هیدروکربور و همچنین از نظر نوع ترکیبات هترواتم دار بستگی به محل و شرایط تشکیل آن دارد. بنابراین مقدار درصد مواد سازنده نفت خام در یک منبع نسبت به منبع دیگر تغییر می‌کند. بطور کلی مواد سازنده نفت شامل: هیدروکربورها- ترکیبات اکسیژنه - سولفوره - ازته و مواد معدنی می‌باشد.

    خواص نفت خام

    گرانی :
    چگالی نفتهای خام را بیشتر بر حسب درجه A.P.I به جای گرانی ویژه (چگالی نسبی) بیان می‌کنند. ارتباط بین این دو ، به گونه ای است که افزایش گرانی API با کاهش گرانی ویژه مطابقت می‌کند. گرانی نفت خام می‌تواند بین پایینتر از 10API تا بالاتر از 50API قرار بگیرد، ولی گرانی اکثر نفتهای خام در گستره بین 20 تا 45API قرار دارد. گرانی API همواره به نمونه مایع در 60 درجه فارینهایت اشاره دارد.

    مقدار گوگرد :
    مقدار گوگرد و گرانی API دو خاصیتی هستند که بیشترین اثر را به ارزش‌گذاری نفت خام دارند. مقدار گوگرد بر حسب درصد وزنی گوگرد بیان می‌شود و بین 0,1 در صد تا 5 درصد تغییر می‌کند. نفتهایی که بیش از 0,5 درصد گوگرد دارند، در مقایسه با نفتهای کم‌گوگردتر ، معمولا محتاج فراورشهای گسترده‌تری هستند.

    نقطه ریزش :
    نقطه ریزش نفت خام بر حسب یا معرف تقریبی پارافینی‌ بودن یا آروماتیکی ‌بودن نسبی آن است. هرچه نقطه ریزش پایینتر باشد، مقدار پارافین کمتر و مقدار آروماتیک بیشتر است.

    حلالیت :
    قابلیت انحلال هیدروکربورها در آب عموما خیلی کم می‌باشد. مقدار آب موجود در هیدروکربورها با افزایش درجه حرارت زیاد می‌شود. حلالیت هیدروکربورها در کلروفرم ، سولفورکربن و تتراکلریدکربن حائز اهمیت است که با افزایش درجه حرارت ، زیاد و با افزایش وزن مولکولی کاسته می‌گردد. قابلیت انحلال آروماتیکها بیشتر بوده و بعد از آنها اولفین‌ها - نفتن‌ها - متانی‌ها قرار دارد. ضمنا قابلیت انحلال ترکیبات اکسیژنه - ازته - سولفوره ، کمتر از هیدروکربورها می‌باشد. بالاخره نفت ، حلال هیدروکربورهای گازی‌شکل و تقریبا تمام هیدرورکربورهای جامد - گریس‌ها - رزین‌ها - گوگرد و ید می‌باشد.

    نقطه جوش :
    نقطه جوش هیدروکربورهای خالص با وزن مولکولی و همچنین برای سری‌های مختلف با تعداد مساوی اتم کربن بترتیب از هیدروکربورهای اشباع‌شده به اولفین‌ها - نفتن‌ها و آروماتیکها افزایش می‌یابد. بدین ترتیب نقطه جوش هیدروکربورهای اشباع شده و اولفین‌ها از همه کمتر و سیکلوآلکان‌ها و آروماتیکها از سایرین بیشتر می‌باشد. برای برش‌های نفتی که مخلوطی از هیدروکربورهای مختلف می‌باشند، یک نقطه جوش ابتدائی و یک نقطه جوش انتهایی در نظر گرفته می‌شود و حد فاصل بین این دو نقطه برای یک برش به نوع مواد سازنده اغلب زیاد و متغیر می‌باشد که به این حد فاصل بین دو نقطه "گستره تقطیر" گفته می‌شود.

    گرمای نهان تبخیر :
    گرمای نهان تبخیر در یک سری همولوگ از هیدروکربن‌ها بترتیب از مواد سبک به سنگین کاهش می‌یابد و همچنین مقدار آن از یک سری به سری دیگر ، مثلا بترتیب از آروماتیکها به نفتن‌ها و هیدروکربورهای اشباع شده نقصان می‌یابد. بنابراین گرمای نهان تبخیر با دانسیته فراکسیون مربوط بستگی دارد.

    قدرت حرارتی :
    قدرت حرارتی عبارت از مقدار کالری است که از سوختن یک گرم ماده حاصل می‌شود. قدرت حرارتی هیدروکربورها به ساختمان مولکولی آنها و قدرت حرارتی یک برش نفتی به نوع و مواد سازنده آن سبتگی دارد. قدرت حرارتی متان بیشتر از سایر هیدروکربورها و برابر با 13310 کیلوکالری به ازای یک کیلوگرم می‌باشد و مواد سنگین حاصله از نفت خام دارای قدرت حرارتی در حدود 10000 کیلو کالری می‌باشد.

    اثر اسید نیتریک :
    هیدروکربورها در اثر اسید نیتریک به ترکیبات نیتره یا پلی‌نیتره تبدیل می‌شود. نیتراسیون برخی از مواد نفتی منجر به تهیه ترکیبات منفجره یا مواد رنگین می‌گردد. موارد استعمال برخی از برش های نفتی بدست آمده از نفت خام

    شیرین کردن آب دریا :
    یکی از موارد استعمال گازهای نفتی در صنایع وابسته به پالایشگاهها تهیه آب شیرین از آب شور می‌باشد.

    به عنوان سوخت :
    از جمله ، بنزین برای سوخت موتورهای مختلف ، کروزون سوخت اغلب تراکتورها و ماشین‌های مورد استفاده در کشاورزی و همچنین موتورهای جت هواپیماها اغلب از کروزون یا نفت سفید می‌باشد، گازوئیل که موتورهای دیزل بعنوان سوخت از نفت گاز (گازوئیل) استفاده می‌نمایند، نفت کوره یا مازوت یک جسم قابل احتراق با قدرت حرارتی 10500 کالری بوده که بخوبی می‌تواند جانشین زغال سنگ گردد و سوختن آن تقریبا بدون دود انجام می‌گیرد.

    روشنایی :
    از کروزون جهت روشنایی و همچنین برای علامت دادن به کمک آتش استفاده می‌شود، چون نقطه اشتعال کروزون بالاتر از 35 درجه است، لذا از نظر آتش‌سوزی خطری ندارد.

    حلال :
    از هیدروکربورهای C4 تا C10 می‌توان برش‌هائی با دانسیته و نقاط جوش ابتدائی و انتهایی متفاوت تهیه نمود که مورد استعمال آنها اغلب بعنوان حلال می‌باشد. بعنوان مثال ، اتر نفت یک حلال سبک با نقطه جوش 75-30 درجه سانتیگراد و وایت اسپیریت (حلال سنگین) که از تقطیر بنزین بدست می‌آید بعنوان حلال ، رنگ‌های نقاشی و ورنی ها استفاده می‌گردد. همچنین برای تمیز کردن الیاف گیاهی و حیوانی و یا سطح فلزات از برش‌های خیلی فرار (تقطیر شده قبل از 110 درجه سانتیگراد) استفاده می‌شود.

    روان کاری :
    روغنهای چرب کننده: نوعی روغن که جهت روان کاری بکار می‌رود. بستگی به شارژ ، سرعت ، درجه حرارت دستگاه دارد. انواع روغنها عبارتند از:

    روغن دوک برای چرب کردن دوک ، موتورهای الکتریکی کوچک و ماشین های نساجی و سانتریفوژهای کوچک
    روغن ماشین‌های یخ سازی جهت روغنکاری کمپرسورهای آمونیاکی کارخانجات یخ‌سازی
    روغن ماشین‌های سبک جهت روان کاری موتورهای الکتریکی ، دینام‌ها و سانتریفوژهای با قدرت متوسط
    روغن ماشین‌های سنگین مخصوص روغنکاری موتورهای دیزلی است مانند دیزل‌های سورشارژه و غیره
    روغن برای سیلندرهای ماشین بخار
    روغن برای توربین ها
    روغن برای موتورهای انفجاری (اتومبیل و غیره)
    روغن دنده
    روغن موتورهایی که دائما با آب در تماس است.

    گریس ها:
    یک روان کننده نیمه جامد است و متشکل از یک روغن نفتی و یک پر کننده (از سری صابونهای فلزی) یا سفت‌کننده (از مواد پلیمری) می‌باشد. کاربرد گریس بیشتر برای اتومبیل‌ها و برخی صنایع مناسب می‌باشد.
    آسفالت و قیراندودی:
    در حال حاضر 75 درصد از باقیمانده حاصل از عمل تقطیر در خلاء برای پوشش جاده‌ها مورد استفاده قرار می‌گیرد.

    موارد استعمال داروئی:
    از قبیل وازلین باعث نرم شدن پوست بدن گردیده و برای بهبود سرمازدگی نیز موثر است.

    پارافین:
    از پارافین ذوب شده و خالص شده جهت ساخت داروهای زیبائی استفاده می‌گردد.

    گلیسیرین:
    مقدار قابل ملاحظه ای از این ماده ، از نفت تهیه می‌گردد. علاوه بر مصارفی که گلیسیرین در صنعت (برای تهیه باروت دینامیت ، مرکب و غیره) دارد، از آن برای فرم نگه داشتن پوست بدن و یا تهیه داروهائی از قبیل گلیسیرین یده استفاده می‌شود

  6. #6
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    سوخت هيدروژن
    امروزه گاز هيدروژن براي استفاده در موتورهاي احتراقي و وسايل نقليه الكتريكي باتري دار مورد بررسي قرار گرفته است
    . هيدروژن در دما و فشار طبيعي، يك گاز است و به اين علت، انتقال و ذخيره آن از سوخت هاي مايع ديگر، دشوارتر است. سامانه ‌هايي كه براي ذخيره هيدروژن توسعه يافته‌اند، عبارتند از:

    هيدروژن فشرده، هيدروژن مايع و پيوند شيميايي ميان هيدروژن و يك ماده ذخيره (براي مثال، هيدريد فلزات).

    با اين كه تاكنون هيچ سامانه حمل و نقل و توزيع مناسبي براي هيدروژن وجود نداشته، اما توانايي توليد اين سوخت از مجموعه متنوعي از منابع و خصوصيت پاك سوز بودن آن، هيدروژن را به سوخت جانشين مناسبي تبديل كرده است.
    هيدروژن يکي از ساده‌ترين و سبك‌ترين سوخت هاي گازي است که در فشار اتمسفري و دماي جوي حالت گاز دارد. سوخت هيدروژن همان گاز خالص هيدروژن نيست، بلكه مقدار كمي اكسيژن و ديگر مواد را نيز با خود دارد. منابع توليد سوخت هيدروژن شامل گاز طبيعي ، زغال سنگ ، بنزين و الكل متيليك هستند. فرآيند فتوسنتز در باكتري ها يا جلبك ها و يا شكافتن آب به دو عنصر هيدروژن و اكسيژن به كمك جريان الكتريسيته يا نور مستقيم خورشيد از آب، روش هاي ديگري براي توليد هيدروژن هستند.
    در صنعت و آزمايشگاه هاي شيمي، توليد هيدروژن به طور معمول با استفاده از دو روش شدني است: 1- الكتروليز 2- توليد گاز مصنوعي از بازسازي بخار يا اكسيداسيون ناقص. در روش الكتروليز با استفاده از انرژي الكتريكي، مولكول‌هاي آب به هيدروژن و اكسيژن تجزيه مي‌شوند. انرژي الكتريكي را مي‌توان از هر منبع توليد الكتريسيته كه شامل سوخت هاي تجديد پذير نيز مي‌شوند، به دست آورد. وزارت نيروي آمريكا به اين نتيجه رسيده است كه استفاده از روش الكتروليز براي توليد مقادير زياد هيدروژن در آينده مناسب نخواهد بود.
    روش ديگر براي توليد گاز مصنوعي، بازسازي بخار گاز طبيعي است. در اين روش، مي‌توان از هيدروكربن‌هاي ديگر نيز به عنوان ذخاير تامين مواد استفاده كرد. براي نمونه، مي‌توان زغال سنگ و ديگر مواد آلي (بيوماس) را به حالت گازي درآورد و آن را در فرآيند بازسازي بخار براي توليد هيدروژن به كار برد. از طرفي چون هيدروکربن هاي فسيلي محدود و رو به اتمام هستند، پس بهتر است ديد خود را به سمت استفاده از منابع تجديد شونده معطوف کنيم.
    گاز هيدروژن مي تواند هم از منابع اوليه تجديد پذير و هم از منابع تجديد ناپذير توليد شود. امروزه توليد گاز هيدروژن از منابع تجديد پذير به سرعت مراحل توسعه و رشد خود را مي پيمايد. اين در حالي است که توليد گاز هيدروژن از منابع تجديد ناپذير به ويژه منابع فسيلي به علت محدود بودن اين منابع روز به روز کاهش مي يابد.

    گاز هيدروژن در اثر واکنش هاي تخميري ميکروارگانيسم هاي زنده، به ويژه باکتري ها و مخمر ها روي بيوماس، توليد مي شود. بيوماس از منابع اوليه تجديد پذير است که از موادي مانند علوفه، ضايعات گياهان و فضولات حيوانات به دست مي آيد. در روند توليد گاز هيدروژن، باکتري هاي بي هوازي با استفاده از پديده تخمير، مواد آلي و آب را به گاز هيدروژن تبديل مي کنند. براي توليد هيدروژن به وسيله باکتري ها دو نوع تخمير وجود دارد: يک نوع تخمير نوري است که در آن به منبع نور نياز است و نوع ديگر، تخمير در تاريکي است که نيازي به نور ندارد. در اين واکنش ها منابع کربني زيادي استفاده مي شود که همگي از بيوماس تامين مي شوند.

    در طبيعت ميکروارگانيسم هاي بي هوازي در غياب اکسيژن و با استفاده از پديده تخمير، گاز هيدروژن توليد مي کنند، ولي مقدار اين گاز از نظر کمي پايين است و از نظر اقتصادي براي مصارف صنعتي و خانگي و ... قابل توجيه نيست؛ از اين رو بايد با استفاده از روش هايي، بازده توليد گاز هيدروژن را افزايش داد. يکي از روش هايي که مي توان بازده توليد گاز هيدروژن را بالا برد، تغييرات ژنتيک در ژنوم اين باکتري ها با استفاده از روش هاي مهندسي ژنتيک و بيوتکنولوژي است. روش ديگر، استفاده از ترکيبي از باکتري هاي هوازي و بي هوازي در کنار هم است. در اين روش چون باکتري هاي بي هوازي در فرآيند تخمير توليد اسيد هاي آلي مي کنند، رفته رفته محيط واکنش اسيدي مي شود و PH پايين مي آيد؛ از اين رو توليد هيدروژن کاهش مي يابد. ولي هنگامي که باکتري هاي هوازي در محيط باشند، از اسيد هاي آلي استفاده و آنها از محيط خارج مي کنند؛ در نتيجه راندمان توليد گاز هيدروژن بالا مي رود.

    تحقيق و توسعه

    وزارت نيروي آمريكا براي توسعه استفاده از هيدروژن دو برنامه اصلي را دنبال مي‌كند که يکي برنامه هيدروژن وزارت نيرو و ديگري شبكه اطلاعاتي تكنولوژي‌هاي هيدروژن است. هيدروژن، سومين انرژي فراوان بر روي سطح زمين است. همان طور كه به صورت ابتدايي در آب و تركيبات آلي يافت مي شود. هيدروژن از هيدروكربن ها يا آب به دست مي آيد و هنگامي كه به عنوان سوخت مصرف مي شود، يا براي توليد الكتريسيته از آن استفاده مي شود و يا با تركيب مجدد با اكسيژن توليد آب مي كند. از اين رو و با توجه به قابليت بالاي توليد انرژي در اين سوخت اخيراً تلاش هاي زيادي براي جانشين کردن اين سوخت صورت مي گيرد.

    مسائل ايمني

    هيدروژن از ديدگاه ايمني نيز مطمئن و مطلوب است و براي حمل ونقل ، نگهداري و استفاده، خطرناك تر از سوخت هاي رايج ديگر نيست. به هر صورت مسائل ايمني همچنان به عنوان يكي از اساسي‌ترين مقوله ها در استفاده از انرژي هيدروژن باقي مي ماند.استانداردهاي متداول دنيا امنيت استفاده از آن را با سختگيري در طراحي‌ و انجام آزمايش هاي متعدد فراهم مي آورد. همچنين در حوزة نگهداري و حمل آن، استانداردهاي بسياري براي تمام تجهيزات مرتبط تدوين شده است.

    اقتصاد هيدروژن

    براي هيدروژن به عنوان يك سوخت، سيستم توزيعي مناسبي وجود ندارد. با اين كه معمولاً انتقال از طريق خط لوله با صرفه‌ترين راه انتقال سوخت‌هاي گازي است، اما در حال حاضر سيستم خط لوله مناسبي موجود نيست. انتقال هيدروژن به طور خاص از طريق مخزن و تانكرهاي گاز صورت مي‌گيرد. استفاده از هيدروژن به عنوان سوخت به يك زير ساختار براي حمل ونقل و نگهداري و با توجه به مسائل ايمني و اقتصادي نياز دارد.
    ديدگاه ايجاد يك زير ساختار كه هيدروژن را به عنوان منبع انرژي مورد استفاده قرار مي‌دهد، مفهوم اقتصادي بودن اين طرح را پديد آورده كه بهترين راه جهت ايجاد تقاضاي بيشتر براي توليد و مصرف اين انرژي است، زيرا منابع توليد هيدروژن بسيار ارزان و دردسترس هستند. هيدروژن قابليت بالايي براي توليد انرژي دارد و ميزان آلودگي ناشي از مصرف اين سوخت در محيط زيست بسيار کم است. اين سوخت به عنوان منبعي تجديدپذير، پاک و فراوان تر از سوخت فسيلي مي تواند کاربرد زيادي براي نيروگاه ها و بخش حمل و نقل داشته باشد.

    منبع www.iusaf.ne

  7. #7
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    سوخت هاي زيستي
    با افزايش قيمت جهانى نفت، در عمل تقاضا براى بازه گسترده اى از انرژى هاى تجديدپذير، از توربين هاى بادى تا ماشين هاى الکل سوز، افزايش يافته است
    . اگرچه روي آوردن به سوخت هاى جديد تنها هنگامي نمايان مى شود كه قيمت نفت در بازارهاى جهانى به يكباره اوج مى گيرد، اما جنبش انرژى هاى تجديدپذير به تدريج در حال وارد شدن به مرحله جديدى از پويايى است.

    رشد امروزه توليد و مصرف انرژى هاى جانشين نه تنها واكنشى سريع و احساسى به تغيير كوتاه مدت قيمت هاى جهانى سوخت هاى فسيلى است، بلكه افراد با نگاهى سطحي به ميزان ذخاير موجود انرژى و تعدد مسائل زيست محيطى درمي يابند که چاره اى جز روآوردن به اقتصادهاى مبتنى بر انرژى هاى جانشين در شهرها و روستاهاى خود ندارند.
    سوخت هاي زيستي نوعي از سوخت ها هستند كه از منابع زيست توده (بيوماس) به دست مي آيند. اين سوخت ها شامل اتانول مايع، متانول، بيوديزل و سوخت هاي ديزل گازي همچون هيدروژن و متان است. تحقيقات روي سوخت هاي زيستي با سه هدف عمده انجام مي شود که عبارتند از:

    توليد سوخت هاي زيستي؛ پيدا كردن راه هاي بهره گيري و استفاده از آن و تعيين پراكندگي ساخت هاي آن. از منابع اوليه توليد اين سوخت ها مي توان به ضايعات چوبي، تفاله هاي محصولات کشاورزي، نيشكر، غلات، روغن گياهان و سبزيجات اشاره کرد. امروزه بيشتر کشور ها در بخش انرژي، نياز و تقاضاي خود را به سوي استفاده از اين گونه سوخت ها سوق مي دهند، زيرا معضل هايي مانند آلودگي زياد محيط زيست سوخت هاي فسيلي كه به نوبه خود سبب برهم خوردن شرايط اكولوژيك ميشوند و خطرهاي زيست محيطي را نيز به دنبال دارند، همچنين محدود بودن ذخاير سوخت فسيلي، سبب شده است تا به اين نوع انرژي ها بيش از پيش توجه شود. اتانول يا الکل اتيليکل، مايعي روشن ، بي رنگ و با بوي قابل تحمل است. درحال حاضر از اين ماده به صورت خالص و يا مخلوط آن با بنزين به عنوان سوخت، استفاده مي شود. اين ماده با عدد اکتان 113 سوختي مرغوب است و به عنوان ترکيبي اکسيژن دار با اضافه شدن به بنزين مي تواند عدد اکتان را افزايش و انتشار آلاينده هايي نظيرco را کاهش دهد.
    اتانول مي تواند در موتورهاي جديد بنزين سوز ، بدون هيچ تغييري در سيستم موتور از 3 تا 24 در صد در اختلاط با بنزين مصرف شود ، اما استفاده از اين ماده با درصدهاي بالاتر نيازمند استفاده از موتورهاي اختصاصي ويا دو منظوره است. در اين مقاله فرآيند هاي شيميايي و بيولوژيک که به توليد اتانول مايع از ضايعات چوبي و تفاله هاي محصولات کشاورزي منجر مي شود، بررسي شده است.

    در فرآيند هاي بيولوژيک از تخمير کربوهيدرات هاي مونومريک، اتانول مايع حاصل مي شود. کربوهيدرات ها را مي توان از منابع گوناگون به دست آورد. براي نمونه در برزيل کربوهيدرات ها را از نيشکر به دست مي آورند که به عنوان ماده اوليه در بيشتر صنايع بزرگ اين کشور استفاده مي شود و يا در آمريکاي شمالي کربوهيدرات ها را از هيدروليز آنزيماتيک نشاسته که در غلاتي مانند ذرت و گندم وجود دارد، به دست مي آورند. براي توليد اتانول از کربوهيدرات ها به عنوان سوخت، بايد از منابع اوليه ارزان قيمت و تا حد ممکن بي مصرف استفاده کرد تا بتوان به سوختي ارزان و مقرون به صرفه دست يافت؛ از اين رو براي توليد اتانول مايع به طور معمول از ضايعات چوبي (چوب هاي سخت و چوب هاي نرم) و تفاله هاي محصولات کشاورزي و زراعتي(مواد ليگنو سلولزي) استفاده مي شود. اين مواد منبعي غني از کربوهيدرات هاي مونومريک هستند که براي توليد اتانول مايع استفاده مي شوند.
    مواد ليگنوسلولزي از ترکيبات سلولزي و همي سلولزي که به صورت زنجيره هاي بسيار بلند کربوهيدراتي هستند، تشکيل شده اند. همچنين اين ترکيبات به وسيله يک ماده چسبنده به نام ليگنين در کنار همديگر نگهداري و محافظت مي شوند. براي آماده سازي مواد ليگنوسلولزي براي توليد اتانول مايع، مراحل زير انجام مي شود: 1- جداکردن ماده ليگنين از سلولز و همي سلولز تا اين مواد براي فرآيند هيدروليز آماده شوند. 2- هيدرولز مواد سلولزي و همي سلولزي به وسيله آنزيم تا به صورت کربوهيدرات هاي مونومريک درآيند.گاهي در فرآيند هيدروليز کربوهيدرات هايي مانند پنتوز ايجاد مي شود که به وسيله مخمر استاندارد که در صنعت توليد اتانول استفاده مي شود، قابل تخمير نيست. فناوري توليد اتانول از ليگنو سلولز يک رشته فرآيند هيدروليزي آنزيماتيک و بيولوژيک است. در مرحله اول ضايعات چوبي و تفاله هاي محصولات کشاورزي را به وسيله بخار اسيد رقيق شده در دما و فشار بالا قرار مي دهند تا ماده اوليه، مستعد تاثير آنزيم شود. در مرحله دوم، مواد تحت تاثير آنزيم قرار مي گيرند تا پيوند هاي ميان مولکولي شکسته و کربوهيدرات مونومريک حاصل شود. در مرحله سوم که فرآيند بيولوژيک است، هيدرات کربن تحت تاثير ارگانيسم زنده اي مانند مخمر و يا باکتري قرار مي گيرد تا عمل تخمير صورت گيرد و اتانول توليد شود. در مرحله پايان به وسيله عمل جداسازي تقطير، اتانول خالص جداسازي مي شود.
    در گذشته در مرحله تخمير بيولوژيک از مخمر که به صورت طبيعي عمل تخمير و توليد اتانول را انجام مي دهد، استفاده مي شد. امروزه با پيشرفت فناوري و مهندسي ژنتيک و با القاي ژن توليد کننده اتانول و دستکاري هاي ژنتيک در باکتري ها توانسته اند يک باکتري نوترکيب ايجاد کنند که با بازده بالاي 90 درصد، اتانول توليد مي کند. استفاده از اين نوع ارگانيسم هاي نوترکيب سبب شده است، روز به روز راندمان توليد اتانول در اين فرايند بالاتر رود.
    تحقيقات ثابت کرده است که مخلوط 10 تا 15 درصد اتانول با سوخت بدون سرب مى تواند در خودروها و شبکه حمل و نقل استفاده شود. نتيجه اين كار، كاهش خروج دود از اگزوز اتومبيل ها به ويژه کاهش گاز سمي منواکسيد کربن است. همچنين اين نوع سوخت آسيب بسيار كمترى به محيط زيست و لايه ازون وارد مي سازد. مصرف گسترده و کلان انرژي حاصل از سوخت هاي فسيلي اگرچه رشد سريع اقتصادي جوامع پيشرفته صنعتي را به همراه داشته است، اما به واسطه انتشار مواد آلاينده حاصل از احتراق و افزايش دي اکسيد کربن در جو و پيامدهاي آن، جهان را با تغييرات فزاينده اي رو به رو کرده است که افزايش دماي زمين، تغييرات آب و هوايي، بالا آمدن سطح آب درياها و تشديد منازعات بين المللي از جمله اين پيامدهاست. از سوي ديگر، پايان زود هنگام منابع فسيلي و پيش بيني افزايش قيمت ها، لزوم جانشيني انرژي هاي تجديد پذير مانند انرژي هاي بيولوژيک و اهميت آن را آشکارتر مي کند

  8. #8
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    در باره نحوه تبديل مواد آلي رسوبات به نفت و گاز با مطالعات جديد ژئوشيميائي و جمع آوري اطلاعات تجربي ثابت شده است كه قسمت اعظم هيدروكربنهاي طبيعي در اثر كراكينگ كروژن ناشي از حرارت زمين (ژئوترمال) توليد مي گردد. همانطور كه بيان گرديد براي بوجود آمدن نفت و گاز وجود مواد آلي فراوان و تشكيل كروژن در هنگام دياژنز رسوبات ضروري مي باشد. پس سنگ مادر (Source Rock) سنگي است كه داراي مقدار كافي كروژن باشد. شرايط مساعد رسوبي براي تجمع و ذخيره شدن مواد آلي شامل گياهان و جانوران دريائي و همچنين مواد آلي خشكي كه توسط رودخانه ها به حوزه رسوبي حمل مي گردد، رسوبات رسي و يا گل كربناته (ريزدانه بودن و محيط آرام رسوب گذاري) مي باشد. علاوه بر اين محيط كف دريا بايستي محيط احياء كننده باشد تا از اكسيدشدن مواد آلي جلوگيري بعمل آيد.
    طبيعي است هرچه ميزان كروژن در سنگ مادر بيشتر باشد توانائي بيشتري براي توليد هيدروكربن وجود دارد لكن علاوه بر درصد مواد آلي، سنگ مادر بايستي ضخامت كافي نيز داشته باشد
    . براساس مطالعات ژئوشيميائي انجام شده براي اينكه سنگ مادري بتواند هيدروكربن توليد نمايد بايد داراي حداقل تراكمي از كربن آلي باشد كه از آن كمتر قادر به توليد هيدروكربن نخواهد بود. اين حداقل عمدتا" 5/0 درصد كربن آلي برآورد مي شود.
    سنگ مادرهائي كه در حوزه هاي رسوبي ايران ديده مي شود نظير سازند كژدمي در ناحيه زاگرس حدود
    10-5 درصد كربن آلي دارد كه بيشتر از جلبكها منشاء گرفته است.
    هيدروكربنها در اثر كراكينگ كروژن بوجود مي آيند
    . كراكينگ كروژن عمدتا" در درجه حرارتهاي 100-80 درجه سانتيگراد شروع مي شود. اين درجه حرارت در يك ناحيه رسوبي با درجه حرارت ژئوترمال طبيعي معادل عمقي بين 3000-2000 متر مي باشد. بنابراين يك سنگ مادر هرچه قدر هم ضخيم و غني از مواد آلي باشد تا در اعماق فوق قرار نگيرد نمي تواند هيدروكربن توليد نمايد. بر همين اساس ابتدا نفت خام سنگين توليد مي گردد. چگالي و وزن مخصوص نفت خام با ازدياد عمق كاهش مي يابد. هرچه قدر سنگ مادر عميقتر مدفون گردد نفت توليد شده سبكتر است و گاز معمولا" محصول آخرين اين فعل و انفعالات است.
    بنابراين ابتداي نفت هاي بسيار سنگين، نفتهاي پارافينيك، نفتهاي سبك، نفتهاي ميعاني و نهايتا
    " گاز بدست مي آيد. وقتي درجه حرارت از 165 درجه سانتيگراد ***** كند فقط گاز توليد خواهد شد يعني تقريبا" از عمق 5000 متر بيشتر (ضخامت رسوبي) احتمال يافتن نفت بسيار كم مي شود و فقط مي توان انتظار يافتن گاز را داشت. در درجه حرارتهاي بالاتر از 230 درجه سانتيگراد كروژن يك بافت گرافيتي ثابت پيدا مي كند كه با ازدياد درجه حرارت هيدروكربني تشكيل نمي شود (نسبت هيدروژن به كربن تغيير نمي يابد). به طور كلي ازدياد عمق باعث ازدياد درجه حرارت مي گردد كه اين ازدياد درجه حرارت دو اثر دارد:
    الف
    - كراكينگ كروژن و تبديل مولكولهاي بزرگ به مولكولهاي كوچكتر مانند تشكيل نفت و گاز
    ب
    - پليمريزاسيون مولكولها كه به تشكيل متان و گرافيت ختم مي گردد (كروژنهاي گرافيتي)
    گازطبيعي موجود در مخازن عمدتا
    " از متان، اتان، پروپان، بوتان و تعداد بسيار ناچيزي از هيدروكربنهاي سنگينتر تشكيل مي گردد. نفت مايع از بوتان به بالا است.
    نكته مهم ديگري كه در مورد تشكيل هيدروكربنها وجود دارد زمان زمين شناسي مي باشد
    . به عبارت ديگر رسوبات قديمي تر (از نظر زمين شناسي) در درجه حرارتهاي پائين تر، همان محصولي را مي دهد كه سنگ مادري با سن زمين شناسي كمتر در درجه حرارتهاي بالاتر هيدروكربن توليد خواهد نمود

    آيا مي دانستيد؟

    - تقريباً3000 فرآورده‌ي نفتي وجود دارد. علاوه بر توليد فرآورده‌هايي نظير گازوئيل، سوخت ديزل، نفت سفيد و نفت خام براي توليد محصولاتي نظير: جوهر، مداد شمعي، آدامس بادكنكي، مايع‌هاي ظرفشوئي، خوشبو كننده‌ها، لنزهاي چشمي، نوارهاي كاست، لاستيك اتومبيل، آمونياك و دريچه‌هاي مصنوعي قلب نيز به كار مي‌رود.
    اولين موتور با سوخت گاز طبيعي در سال
    1860 ساخته شد.

    - خانه‌هاي ايران بيشتر با گازهاي طبيعي گرم مي‌شوند تا سوخت‌هاي ديگر.

    - وقتي گاز طبيعي مي‌سوزد دي‌اكسيدكربن و بخار آب توليد مي‌كند. اين دو ماده همان موادي هستند كه از تنفس انسان نيز بر جاي مي‌مانند.

    - گاز طبيعي در حالت عادي بدون بو است. به گاز طبيعي قبل از توزيع يك ماده از تركيبات سولفور به نام تجاري مركاپتان اضافه مي‌شود تا هنگام نشت احتمالي گاز به ما كمك كند.

    - تعداد بنزين مصرفي اتومبيل‌هاي امريكا در سال مي‌تواند يك زمين فوتبال را تا ارتفاع ... پركند.

    - بزرگترين ايالت ذغال‌سنگ در آمريكا وايومينگ است كه درسال 1996، 278 ميليون تن ذغال‌سنگ توليد كرد.

    - صنعت استخراج زغال سنگ هم اكنون از لحاظ صدمات و يا بيماريهاي وارده به كارگران از ايمن‌ترين صنايع است.

    - اعضاي اتحاديه‌هاي كارگري فقط بر روي چهل درصد صنايع استخراج ذغال‌سنگ فشار وارد مي‌كنند.

    - 2/3 توليد ذغال‌سنگ امريكا توسط راه‌آهن حمل مي‌شود.

    - از هر ده تن ذغال‌سنگ مصرفي در امريكا 9 تن آن در توليد برق مصرف مي‌شود.

    - وقتي كه ذغال سنگ در يك نيروگاه برق بخار مي‌سوزد، بخار يك توربين را به حركت درمي‌آورد. اين توربين يك مولد برق را به حركت درمي‌آورد. در طي اين فرآيند 2/3انرژي توليد شده توسط ذغال‌سنگ طي 20 سال گذشته 1ميليون هكتار اراضي معدني را استخراج كرده اين مساحت از ايالت دلاور نيز كمتر است

  9. #9
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    توانایی های ناشناخته هیدرات های گاز طبیعی
    كشف مقدار زيادي هيدرات گاز در دامنه شمالي آلاسكا و پايين خليج جنوب شرقي ايالات متحده امريكا،اين ايده را قوت مي بخشد كه هيدراتهاي گاز،منبع بسيار مهم انرژي در آينده محسوب ميشوند
    .گرچه،ابتدا مسائل بسيار مهم تكنيكي و فني بايد حل شود تا بتوان هيدرات هاي گاز را به عنوان يك منبع انرژي مهم در جهان،معرفي كرد.هيدرات هاي گاز به طور طبيعي به شكل مواد كريستالي كه از آب و گاز تشكيل شده،هستند.در هيدرات ها، يك شبكه جامد آب،ملكول هاي گاز را در يك ساختار قفس مانند در خود جاي مي دهند.هيدرات هاي گاز بيشتر در نواحي يخ زده و قطبي و زير دريا در لايه هاي رسوبي وجود دارند. در حالي كه،متان،پروپان و ديگر گازها مي توانند در ساختار قفس مانند محبوس شوند،اما احتمال تشكيل هيدرات متان بسيار بيشتر است.ميزان متان محبوس شده در هيدرات هاي گاز بسيار زياد است و تخمين ميزان آن بيشتر حدسي و فرضي است و محدوده آن از 000/100 تا 000/000/270 تريليون فوت مكعب است.به نظر مي رسد كه ميزان گاز در ذخاير هيدرات جهان بسيار بيشتر از حجم منابع ديگر انرژي است.گرچه تا به حال در مورد دسترسي و توليد اين هيدرات هاي گاز تحقيق و پژوهش بسياري صورت نگرفته است.هدف اوليه پژوهش هاي مربوط به هيدرات هاي گاز، بررسي پارامترهاي زمين شناختي است كه ايجاد هيدرات هاي گاز را در كنترل دارد.هدف ديگر، ارزيابي حجم گاز طبيعي ذخيره شده، درون انباشته هاي جهاني هيدراتهاي گاز است.اين مقاله نتايج آخرين ارزيابي ها در مورد منابع هيدرات گاز طبيعي را مطرح مي كند و سعي دارد توانايي توليد ذخاير هيدرات هاي گاز را ارزيابي كند و فناوري لازم براي توليد اقتصادي و به صرفه هيدرات هاي گاز در 20 تا 50 سال آينده را مورد بررسي قراردهد.در پايان،مروري بر برنامه هاي توليد گاز از منابع هيدرات در ژاپن و هندوستان خواهيم داشت.

    مروري بر هيدرات هاي گاز

    تحت شرايط مناسب دمايي و فشاري،هيدرات هاي گاز معمولاً يك ساختار كريستالي اوليه تحت عنوان ساختار 1 و ساختار 2 را تشكيل مي دهند.هر واحد سلولي ساختار 1 هيدرات گاز شامل 46 ملكول آب است كه دو فضاي تهي كوچك و 6 فضاي بزرگ تشكيل مي شود.ساختارهاي 1 هيدرات هاي گاز فقط مي توانند ملكول هاي كوچك گاز مثل متان و اتان،با قطر ملكولي كمتر از 2/5 آنگستروم را در خود جاي دهند.واحد سلولي ساختار 2 هيدرات هاي گاز شامل 16 dodecahedral (دودي كاهدرال) كوچك و 8 فضاي خالي بزرگ هگزاكايي دوكاهدرال است كه توسط 136 مولكول آب شكل مي گيرد.ساختار 2 هيدرات هاي گاز ممكن است داراي گازهايي با ابعاد ملكولي در محدوده 9/5 تا 9/6 آنگستروم مثل پروپان و ايزوبوتان باشد.در شرايط دما و فشار استاندارد (STP)،يك حجم از هيدرات اشباع شده متان (ساختار 1) داراي بيش از 164 حجم از گاز متان است. به علت اين ظرفيت عظيم ذخيره سازي گاز،اين هيدرات ها، منابع مهمي از گاز طبيعي محسوب مي شوند. در سطح ماكروسكوپي،بسياري از خواص مكانيكي هيدرات گاز مثل يخ است. چون هيدراتها داراي حداقل 85 درصد آب بر يك پايه ملكولي هستند.از همه جالب تر،خواص مرحله ي تعادل هيدرات هاي گاز است كه بيشتر توسط تناسب ملكول هاي ميهمان گاز، درون قفس هاي هيدرات آب كنترل مي شود. براي مثال اضافه كردن پروپان به يك هيدرات خالص متان،ساختار هيدرات را(از ساختار 1 به ساختار 2 ) تغيير مي هد.

    هيدرات هاي گاز نواحي يخ زده و قطبي

    به نظر مي رسد كه هيدرات هاي گاز ،در حوزه غرب سيبري وجود دارند و تصور مي شود كه در ديگر نواحي قطبي شمال روسيه،مثل ايالت تيمان-پچورا،كراتن شرق سيبري و شمال شرقي سيبري و نواحي كامچاتكا نيز وجود داشته باشند.هيدرات هاي گازدر نواحي قطبي شمال آلاسكا و ايالت هاي شمالي آمريكا نيز وجود دارند. از شواهد غير مستقيمي كه نتيجه حفاري چاه در اين نواحي بود به وجود هيدرات هاي گاز در دامنه شمالي آلاسكا پي برده شد و احتمال حضور لايه هاي متعدد هيدرات هاي گاز در ناحيه خليج پرودهو (Prudhoo) و حوزه هاي نفتي رودخانه كوپاروك را تأ ئيد مي كند.در يك پنجم از چاه هاي حفاري شده در ناحيه ي دلتاي مكنذي وجود هيدرات هاي گاز تأييد شده است و بررسي چاه هاي جزاير قطبي نشان مي دهد كه در نواحي قطبي، هيداراتهاي گاز در اعماق 130 تا 2000 متر وجود دارند.

    هيدراتهاي گاز دريايي

    وجود هيدراتهاي گاز در نواحي دريايي، عمدتاً نتيجه بازتاب غيرعادي لرزهاي است كه از محدوده منطقه ويژه مرزي هيدراتهاي گاز ميآيد.اين بازتابها عمدتاً به نام بازتاب تحريكي انتهايي ياBSR خوانده ميشوند.BSR ها در اعماق 100 تا 1100 متري از سطح دريا، نقشهبرداري شدهاند.هيدراتهاي گاز در لايههاي رسوبي خليج مكزيك،بخش دريايي حوزه رودخانه Eel در كاليفرنيا،درياي سياه،درياي خزر و درياي Okhotsk پيدا شدهاند.همچنين،هيدراتهاي گاز در اعماق بيشتر زير سطحي در خليج جنوب شرقي امريكا، Black Kidge در خليج مكزيك،حوزه كاسكاديا نزديك اوريگان،كانال امريكاي مركزي،درياي پروودرنواحي شرقي و غربي ژاپن نيز كشف شدهاند.

    ارزيابي منابع هيدرات گاز

    از آنجا كه هيدراتهاي گاز در نواحي قطبي و در لايههاي رسوبي دريايي وجود دارند،ميتوانند يك منبع انرژي بالقوه محسوب شوند.پيشبينيهاي جهاني براي ميزان گاز طبيعي موجود در لايههاي هيدرات گاز از 1020/5 تا 1062/1 تريليون فوت مكعب براي نواحي قطبي و از 1051/1 تا 1087/2 تريليون فوت مكعب براي لايههاي رسوبي اقيانوسي است.پيشبينيهاي انتشار يافته در مورد منابع هيدراتهاي گاز نشاندهنده نوسانات قابل ملاحظهاي است. آخرين پيشبينيها از ميزان متان در انباشتههاي جهاني هيدراتهاي گاز حدود 1057 تريليون فوت مكعب است اما به نظر ميرسد كه لايههاي رسوبي اقيانوسي داراي منابع بيشتر و بزرگتري از گاز طبيعي هستند تا لايههاي رسوبي قارهاي.هدف اصلي كار ارزشيابي و تخمين در مؤسسه پژوهشي زمين شناختي امريكا،تخمين زدن منابع هيدرات گاز در امريكا هم در نواحي ساحلي و هم در نواحي دريايي است.ارزيابي هيدراتهاي گاز براساس يك برنامه تجزيه و تحليلي، ايالت به ايالت انجام ميشود.ما تمامي هيدراتهاي گاز را بدون توجه به مسائل فني آنها،تعريف،توصيف و ارزيابي ميكنيم.بنابراين،اين ارزيابي،تنها با حجم منابع هيدراتهاي گاز موجود مربوط است،يعني ميزان گازي كه درون هيدراتهاي گاز بدون در نظر گرفتن بازيافت آن وجود دارد.در يك روش تجزيه و تحليلي،انباشتههاي بالقوه هيدروكربن، براساس خصوصيات زمين شناختيشان گروهبندي ميشوند سپس شرايط زمينشناختي بروز هيدروكربنها الگوبرداري ميشود. در اين روش ارزشيابي،زمين شناسان، در مورد عوامل زمين شناختي لازم براي تشكيل انباشتههاي هيدروكربن و عوامل زمين شناختي تعيين كننده اندازه آنها،بحث ميكنند.در يك ارزيابي،11 حوزه هيدرات گاز،در 4 ايالت نفتي دريايي و ساحلي كشف و براي هر حوزه ميزان هيدراتهاي گاز تخمينزده شد.پيشبينيهاي انجام شده براي هر كدام از اين 11 حوزه جمعآوري شدند تا كل منابع هيدرات گاز در ايالات متحده آمريكا تخمين زده شود.منابع موجود گاز درون هيدراتها در ايالات متحده امريكا بين 765/112 تا 110/676 تريليون فوت مكعب گاز البته با سطح احتمال 05/0 تا 95/0 است. گرچه اين آمار،همراه با درصد بالايي از شك و ترديد است،اما نشان دهنده ميزان بسيار زيادي گاز ذخيره شد در هيدراتهاي گاز هستند.ارزش كلي هيدراتهاي گاز محاسبه شد ه در امريكا حدود 222 تا 320 تريليون فوت مكعب گاز است.لازم به ذكر است كه حفاريهاي پژوهشي دريايي كه اخيراً درون منطقه ويژه اقتصادي امريكا در امتداد ناحيه شرقي اين كشور انجام شده است،وجود مقادير قابل توجهي از متان ذخيره شده را به عنوان هيدرات گاز جامد و گاز آزاد حبس شده زير هيدراتهاي گاز،تأييد ميكند.

    توليد گاز از هيدراتهاي گاز

    روشهاي پيشنهاد شده بازيافت گاز از هيدراتها معمولاً شامل تفكيك كردن يا ذوب كردن هيدراتهاي گاز به روشهاي زير است:1)گرم كردن مخزن براي دماي تشكيل هيدرات 2)كاهش فشار مخزن زير موازنه هيدارت 3)تزريق يك مهاركننده مثل متانول يا گليكول درون مخزن براي كاهش شرايط تثبيت هيدرات.البته در حال حاضر، بازيافت گاز از هيدراتها به تعويق انداخته ميشود چون هيدراتها معمولاً در نواحي خشن قطبي و نواحي عميق دريايي گسترده شدهاند.اخيراً از يك سري مدلهاي تحريك گرمايي ساده هم براي ارزيابي توليد هيدرات گاز از آب گرم و جريانهاي بخاري استفاده شده است كه نشان ميدهد،گاز را ميتوان از هيدراتها به ميزان كافي توليد كرد به صورتي كه هيدراتهاي گاز به يك منبع قابل بازيافت تكنيكي تبديل شوند،گرچه هزينه زياد اين تكنيكهاي بازيافت پيشرفته گاز،جلوي بازيافت را ميگيرد. استفاده از مهاركنندههاي هيدرات گاز براي توليد گاز از هيدراتها از لحاظ فيزيكي امكان پذير است،گرچه،استفاده از حجمهاي زياد مواد شيميايي مثل متانول هزينه اقتصادي و زيست محيطي بالايي دارد.از ميان تكنيكهاي مختلف توليد گاز طبيعي از هيدراتها،اقتصاديترين و به صرفهترين روش،طرح فشار زدايي است.حوزه گازي Messoyakha در بخش شمالي حوزه غرب سيبري اغلب به عنوان يك مثال از توليد گاز از انباشتههاي هيدروكربن مورد استفاده قرار ميگيرد. از تمامي اطلاعات زمين شناختي براي تأييد حضور هيدراتهاي گاز در قسمت بالايي اين حوزه استفاده شده است.پيشينه توليد گاز از هيدراتهاي اين حوزه نشان ميدهد كه هيدراتهاي گاز يك منبع توليدي فوري از گاز طبيعي هستند و توليد را ميتوان با روشهاي هميشگي شروع و حفظ كرد. توليد طولاني مدت از بخش هيدراتگاز حوزه Messoyakha با برنامه ساده فشارزدايي قابل دسترسي است.توليد از بخش پاييني گاز آزاد اين حوزه در سال 1969 آغاز شد.گرچه در سال 1971،فشار مخزن از ميزان مورد انتظار انحراف پيدا كرد.اين انحراف به آزادسازي گاز آزاد از هيدراتهاي تفكيك يافته گاز نسبت داده ميشود.از اين حوزه تا به حال حدود 36 درصد (حدود 183 ميليارد فوت مكعب) گاز برداشت شده است.گرچه برخي محققان معتقدند كه گاز توليد شده از هيدراتها نبوده است.

    فعاليتهاي پژوهشي بينالمللي

    در دو سال گذشته،مؤسسات دولتي در ژاپن،هند و كره جنوبي شروع به توسعه برنامههاي پژوهش براي بازيافت گاز از هيدراتهاي اقيانوسي كردهاند.يكي از مهمترين پروژههاي هيدرات گاز كه در ژاپن در حال انجام است،يك پروژه 5 ساله براي ارزيابي منابع داخلي هيدراتهاي بالقوه گاز طبيعي است.در مقالاتي كه منتشر شده است: مؤسسه مجري طرح، اعلام كرده است كه هيدراتهاي متان ميتواند نسل آينده منبع انرژي قابل توليد داخلي باشد.در سال 1996 اين برنامه تحقيقاتي زمين شناختي و لرزهشناسي بر روي نواحي قارهاي شمالي و جنوبشرقي ژاپن انجام شده است.براساس تحقيقات صورت گرفته،كاشف به عمل آمده است كه حدود 1800 تريليون فوت مكعب گاز درون هيدراتهاي گاز ناحيه نانكاي ذخيره شده است.هندوستان نيز مانند ژاپن به علت پرداخت هزينهاي بالا براي واردات LNG ،مطالعات پژوهشي چندي را مبني بر حضور و امكان بازيافت گاز از هيدراتهاي گاز در اين كشور آغاز كرده است.پژوهشها نشان ميدهند كه بين هند و ميانمار،در درياي آندامان منبع عظيمي از هيدراتهاي گاز وجود دارد كه حدس زده ميشود،داراي 211 تريليون فوت مكعب گازباشد.دولت هندوستان اعلام كرده است كه اين مسئله براي تأمين نيازهاي فزاينده انرژي اين كشور از اهميت بسياري برخوردار است.با اينكه اطلاعات ما در مورد هيدراتهاي نهفته گاز بسيار اندك است،اما ميتوان انتظار داشت با توسعه فناوريهاي جديد بتوان به هيدراتها به عنوان نسل آينده منبع انرژي نگاه كرد.

    منبع:www.worldenergy.com

  10. #10
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    گاز طبيعي فشرده (CNG) يکي از مناسب ترين و در دسترس ترين جانشين هاي بنزين به شمار مي آيد، به ويژه در ايران که با بهره برداري از همه منابع شناسايي شده تا تدود ۱۷۰ سال گاز طبيعي با بهاي ثابت خواهد داشت، سوختي ايده آل است و در صورت گسترش مصرف، کشور را از واردات بنزين بي نياز مي سازد.
    گاز طبيعي نيز سوختي فسيلي است که به صورت گاز و يا گاز همراه با چاه هاي نفت يا مايعات تاوي گاز از چاه ها استخراج مي شود. گاز طبيعي به طور عمده از متان (CH۴) تشکيل شده و داراي مقادير ناچيزي اتان (C۶H۶)، پروپان(C۳H۸)، بوتان (C۴H۱۰) و پنتان(C۵H۱۲) است. متان، بي رنگ و بي بو است و با شعله اي کم رنگ و نسبتاً روشن مي سوزد.
    گاز طبيعي تميز ترين سوخت فسيلي است، زيرا به طور عمده فقط بخار آب و دي اکسيد کربن توليد مي کند. دماي اتتراق خود به خود گاز طبيعي 649 درجه سانتي گراد است که 315 درجه سانتي گراد بالاتر از دماي خود اشتعالي بنزين است. گاز طبيعي فشرده، سوختي قابل استفاده در خودروها است و نسبت به بنزين مزيت ها و معايبي دارد. اين سوخت اکتان بالايي دارد، تميز مي سوزد، قابل اندازه گيري است و معمولاً ميزان توليد گازهاي خروجي آن پايين است. اصولاً دو نوع جايگاه سوخت گيري CNG متداول براي خودروها وجود دارد: جايگاه هاي سوخت گيري سريع و سوخت گيري آرام. در جايگاه هاي سوخت گيري سريع، زمان سوخت گيري خودروها کم است(2 تا 3 دقيقه براي هر خودرو). در جايگاه هاي سوخت گيري آرام، عمليات سوخت رساني به خودرو در 6 تا 8 ساعت انجام مي شود و براي سوخت گيري در پارکينگ منازل يا مکان هايي که خودروها در طول شب پارک مي شوند، مناسب است.
    ايستگاه CNG، گاز مورد نياز خود را از شبکه گاز شهري دريافت مي کند. نخست گاز وارد اتاقک(metering) و ميزان گاز ورودي اندازه گيري و ***** مي شود، سپس گاز ***** شده وارد دستگاه هايي به نام خشک کن(Dryer) مي شود. اين دستگاه را مي توان در انتهاي مسير نيز قرار داد، اما تالت بهينه استفاده از آن در ابتداي خط است. کار دستگاه خشک اين است که رطوبت موجود در شبکه گاز شهري را جذب کند و گاز خشک شده اي را به درون کمپرسور مي فرستد. دليل اين امر اين است که آب بزرگ ترين دشمن تجهيزات CNG است. آب مي تواند سبب خوردگي اتصالات و جدار داخلي سيلندرها شود. آب موجود در گاز فشرده در فشار 200 بار در 15 درجه سانتي گراد يخ مي زند و تشکيل بلورهاي يخ مي تواند موجب انسداد اريفيس هاي کوچک و يا خطوط انتقال گاز طبيعي فشرده شود. خشک کن هاي مورد استفاده در جايگاه هاي CNG معمولاً از نوع جذبي هستند و درون برج هاي دو قلوي آنها معمولاً مواد جذب کننده رطوبت مانند گليکول يا سيليکازل قرار داده مي شود که با يک سيستم کنترلي به طور متناوب، عمل جذب رطوبت گاز ورودي را انجام مي دهند. پس از اين مرتله، کمپرسور گاز خشک را مي مکد و در 3 تا 4 مرتله گاز را از فشار تدود 250-220(psi) به 3000 تا 3600(psi) مي رساند. کمپرسورهاي مورد استفاده در ايستگاه هاي سوخت رساني CNG معمولاً از نوع رفت و برگشتي هستند که داراي مزيت هاي سهولت تعميرات به دليل اشتراک سازکار کار آنها با بسياري از کمپرسورهاي رفت و برگشتي در صنايع ديگر، امکان ساخت به صورت يک يا چند مرتله اي در يک پوسته واتد، کارآيي قابل قبول اين کمپرسورها در تد بالا و دبي هاي نسبتاً پايين و امکان استفاده از موتورهاي گازسوز يا موتورهاي الکتريکي به عنوان نيروي مترک است. از معايب آنها بزرگي ابعاد و ارتعاش هاي زياد آنها است که مي بايد به عنوان عوامل اساسي به هنگام متاسبه شاسي ، قاب و خود پوسته کمپرسور لتاظ شوند. گاز در هر مرتله فشرده سازي به دليل اصطکاک مولکول هاي گاز با يکديگر و با جدار سيلندرها به شدت گرم مي شود؛ در نتيجه مي بايد در ميان مسير عبور آن خنک کن مياني يا intercooler قرار داد. اين کولرها مي بايد توان جذب 85 تا 90 درصد گرماي تاصل از عمل فشرده سازي در هر مرتله را داشته باشند. کولرها به صورت هوا خنک (با کمک فن و فين هاي خنک ساز)يا آب خنک (با استفاده از رادياتور) انتخاب مي شوند. ياتاقان ها و رينگ هاي پيستون ها مي بايد پيوسته روغن کاري شوند که انواع روغن کاري به دو دسته روغن کاري تتت فشار و روغن کاري پاششي تقسيم مي شود. روغن کاري تتت فشار، روش بهتري شمرده مي شود. دوره کارکرد رينگ هاي کمپرسورها با روغن کاري تقريباً 8000 ساعت است. براي جداسازي روغن موجود در گاز فيلترهاي روغن و جداسازهاي دقيق تر به کارمي روند. کمپرسورهاي مورد استفاده در ايستگاه هاي CNG معمولاً 200-2 مترمکعب در ساعت، ظرفيت توليدگاز فشرده دارند. نيروي مترک کمپرسورهاي CNG بيشتر موتور الکتريکي است. اين موتورها با برق سه فاز کار مي کنند و نيروي توليدي توسط آنها معمولاً با استفاده از تسمه ها و قرقره ها، چرخ دنده ها و چرخ زنجير به کمپرسور انتقال داده مي شوند. انتقال نيرو با کوپلينگ ها، روش بهتري براي انتقال نيرو به شمار مي آيد، زيرا ارتعاش کمتري دارد و هم متوري را دقيق تر و طولاني تر نگاه مي دارد. تداکثر توان مورد مصرف براي الکتروموتورهاي کمپرسورها 250 اسب بخار است که با توجه به توان مورد نياز کمپرسور انتخاب مي شوند.
    مخازن بازيافت
    براي اين که پس از خاموش شدن کمپرسور به هر دليلي گاز فشرده شده در پشت سيلندرها باقي نماند، لوله کشي جداگانه به مخزن بازيافت انجام مي پذيرد. گاز تخليه شده در اين مخزن دوباره به وسيله رگولاتوري به جريان ورودي بازگردانده مي شود.
    مخازن
    در مرتله پاياني تراکم گاز با فشاري در تدود (psi)3600 يا 250 بار کمپرسور را ترک مي کند. خودروها با فشاري تدود 200 بار سوخت گيري مي کنند. نصب يک مخزن فشار بالا در ايستگاه زمان سوخت گيري به ميزان عمده اي از کاهش و خاموش و روشن شدن هاي پي در پي کمپرسور پيشگيري مي کند و در نتيجه عمر کاري کمپرسور افزايش مي يابد. مخازن ذخيره سازي CNG در ايستگاه را معمولاً به سه دسته تقسيم مي کنند. اين سه دسته عبارتند از:
    سيلندرهاي فشار بالا (High pressure)،
    سيلندرهاي فشار متوسط (Medium Pressure) و
    سيلندرهاي فشار پايين (Low Pressure).

صفحه 1 از 9 123456789 آخرینآخرین

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •