صفحه 5 از 8 نخستنخست 12345678 آخرینآخرین
نمایش نتایج: از شماره 41 تا 50 , از مجموع 79

موضوع: مهندسی شيمی و نفت 2

  1. #41
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    شيرين کردن گاز طبيعی و فوايد آن كلمات كليدي: گاز شيرين، شيرين سازي، تركيبات گوگردي

    گاز شيرين چيست و چرا گاز را شيرين مي كنيم ؟
    گازي گه هيدروژن سولفات (تركيبات گوگردي) و دي اكسيد كربن در آن موجود نباشد را گاز شيرين(Sweet Gas) مي گويند.

    عمل يا اعمالي كه باعث خارج ساختن تركيبات گوگردي از نفت و يا گاز مي گردند را شيرين ساختن گاز مي گويند. گاز ترش (Sour gas) در خود گوگرد و يا تركيباتي از گوگرد دارد كه حتما بايد از آن خارج شود زيرا هم محصول پالايش شده را نامرغوب مي سازد و هم براي وسايل و دستگاهها زيان آور هستند. البته گوگرد خارج شده در صنعت مورد استفاده قرار مي گيرد.

    مقدار مجاز وجود تركيبات گوگردي :
    0.1 to 0.25 grains per 100 SCF of gas where 1 lb(pound) = 7000 grains


    چرا تركيبات گوگردي (H2S content) و دي اكسيد كربن (CO2) بايد از گاز جدا شوند ؟

    1) هر دو اين گازها در هنگام سوختن ، گازهاي سمي توليد مي كنند. H2S در هنگام سوختن SO2 وSO3 توليد مي كند كه هر دوي اين گازها سمي هستند. (CO2) در غياب اكسيژن مونوكسيد كربن توليد مي كند كه گازي سمي است.
    2) از آنجايي كه اين گازها تقويت كننده خاصيت خورندگي هستند لذا اين گازها بايد حذف شوند تا از خوردگي فلزات جلوگيري شود.
    3) مقدار زياد (CO2) باعث مي شود تا خاصيت گرم كنندگي گاز كاهش يابد.

  2. #42
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    انواع مخازن نفت و گاز كلمات كليدي: انواع مخازن، نمودارهاي فازي، نقطه شبنم، نقطه حباب، نقطه بحراني

    رفتار سیالات مخزن در مدت تولید بوسیله نمودارهای دو فازی آن و محل قرار گرفتن نقطه بحرانی آن سیال تعیین می گردد.

    ابتدا لازم است توضیحاتی در مورد این نمودار های فازی و نکات مهم مربوط به آن ذکر شود.دربررسی و آنالیز سیالات درون مخزن چندین نمودار از امهیت خاصی برخوردار می باشند مانند نمودارهای P-T، P-V، V-T، P-X، T-X، V-T و همچنین نمودار سه بعدی P-V-T که با توجه به اهمیت نمودار P-T در مهندسی مخازن و همچنین سادگی این نمودار تعاریف اولیه روی این نمودار داده خواهد شد.

    لازم به ذکر است که سیالات درون مخزن بیشتر حالت مخلوطی از چندین ترکیب (Muticomponent) می باشند لذا در اینجا سعی بر این است که این تعاریف برای حالت مخلوط چند جزئی داده شود. در شکل 1-1 ابتدا نقطه A را در نظر می گیریم. در فشار PA+ مخلوط ما مایع می باشد. همچنان که فشار را کاهش می دهیم (در دمای ثابت و در امتداد خط A-B) مایع تا رسیدن به نقطه 1 انبساط خواهد یافت و در این نقطه ملکول های کوچک گازی قادر به ترک مایع خواهند شد. این نقطه که در آن اولین حباب های کوچک گازی از سیال مایع جدا می شود را نقطه حباب می نامند و فشاری را که در آن فشار اولین گاز تشکیل خواهد شد را فشار نقطه حباب (Bubble point pressure) می گویند. اگر دوباره فشار را کاهش دهیم گازهای بیشتری جدا خواهند شد تا جایی که میزان بسیار کمی از مایع باقی می ماند. نقطه ای که در آن تنها یک قطره مایع باقی مانده است را نفطه شبنم (Dew Point) می نامند و فشار در این نقطه را فشار نقطه شبنم (Pd) می گویند.

    مهندسی شيمی و نفت  2

    کاهش بیشتر فشار به نقطه B سبب انبساط گاز خواهد شد. برای نمودار مخلوط های چند جزئی محل برخورد منحنی نقاط حباب و نقاط شبنم را نقطه بحرانی (Critical Point) می گویند. در این نقطه خواص فیزیکی گاز و مایع با هم برابر می باشند و تشخیص فاز گاز از مایع بسیار دشوار می باشد. در نمودار های P-T دو نقطه cricondenbar و cricondentherm از اهمیت بسزایی برخودار می باشند مخصوصا در تعیین نوع مخازن گازی، نقطه cricondenbar بالاترین فشاری است که دو فاز بطور همزمان می توانند وجود داشته باشند و نقطه cricondentherm بالاترین دمایی است که دو فاز بطور همزمان می توانند وجود داشته باشند. (در شکل 1-1 این دو شکل مشخص شده اند).

    با توجه به این تعاریف اولیه و همچنین با در نظر گرفتن دما و فشار مخازن نوع سیال مخزن را تعیین نموده و بدین ترتیب می توان آن مخزن را نام گذاری کرد. با توجه به سیال مخزن می توان مخازن را به 5 نوع: نفت سیاه (Black oil)، نفت فرار (Volatile oil)، مخازن میعان گازی (Gas condensate)، گاز تر(Wet gas) و گاز خشک (Dry gas) تقسیم نمود. اگر دمای مخزن ما کمتر از دمای نقطه بحرانی باشد، مخزن نفتی می باشد که یا نفت سیاه و یا نفت فرار می باشد. اگر دمای مخزن بیشتر از دمای نقطه بحرانی باشد، مخزن گازی می باشد. نکته قابل توجه در مورد مخازن نفتی اینست که آن ها را با توجه به فشار مخزن نیز به دو دسته زیر اشباع (undersaturated) و یا اشباع (saturated) تقسیم بندی می نمایند. مخازن زیر شابع دارای فشار بیشتر از فشار حباب می باشد ولی مخازن اشباع دارای فشاری زیر فشار حباب می باشند و اگر گاز به اندازه کافی از نفت جدا شده باشد و همچنین تراوایی عمودی مخزن نیز بالا باشد، این گاز ها در بالای مخازن اسباع جمع شده و تشکیل کلاهک گازی (Gas cap) خواهند داد.

  3. #43
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    "مخزن هوشمند" فناوری تازه در مشخصه یابی مخازن نفت و گاز كلمات كليدي: مخزن هوشمند، اطلاعات پویا، فناوری نانو

    پروژه ایجاد مخزن هوشمند ( پویانما) که در حال حاضر کارشناسان پژوهشگاه صنعت نفت آن را در دست اجرا دارند، با ارائه اطلاعات پویای (دینامیک) مخازن هیدروکربوری، تصمیم گیری در مورد روش ها و سیاست های برداشت از مخازن را آسان می سازد.
    اطلاعات پویا (دینامیک) معمولا اطلاعاتی از جمله فشار و دمای محلی، چگالی (دانسیته) و گرانروی (ویسکوسیته) درون مخازن را شامل می شود، که دستیابی به آنها در مقایسه با اطلاعات ایستا (استتیک) نظیر جنس سنگ و یا لایه های مخزن روندی بسیار پیچیده تر را طلب می کند.

    مهندس مهدی داراب مسوول پروژه ایجاد مخزن هوشمند بر اساس فناوری نانو در این باره می گوید: «دستیابی به اطلاعات پویای مخازن همواره از نکات کلیدی در مشخصه یابی مخازن نفت و گاز و مخازن هیدروکربوری بوده است و در این پروژه تراشه ای به نام " پویانما" ساخته می شود که اطلاعات مورد نظر را «درجا» و« به هنگام» در دسترس کارشناسان قرار می دهد، این اطلاعات سپس در یک اتاق کنترل در محل، پردازش و با نرم افزاری که نگارش آن تکمیل خواهد شد تصویر سازی می شود. با داشتن این اطلاعات کارشناسان می توانند تصمیم گیری مناسب را در مورد چگونگی برداشت از مخزن انجام دهند و برای مثال تصمیم بگیرند برای جبران افت فشار ناشی از ازدیاد برداشت گاز یا آب به مخزن تزریق شود.

    به گفته وی دستیابی به اطلاعات دینامیک حلقه مفقوده در عملیات مشخصه یابی مخازن است و چنانچه این روش تازه به سرانجام برسد انقلابی در زمینه مشخصه یابی مخازن خواهد بود که در سایر نقاط جهان نیز می تواند مورد استفاده قرار گیرد.
    در حال حاضر از روش های سنتی آنالیز فشار و دما برای دستیابی به اطلاعات پویای مخازن استفاده می شود و با استفاده از این اطلاعات مخزن مورد نظر در سیلندرهایی در آزمایشگاه شبیه سازی می شود، مهمترین نقاط ضعف این روش ها، احتمال فراوان خطای آزمایشگاه و آزمایشگر است که میزان صحت داده هایی را که از این راه به دست می آید کاهش می دهد.

    مهندس داراب علاوه بر مزیت های یاد شده، سرعت عمل و صرفه جویی در وقت و هزینه را از دیگر امتیازات روش تازه می خواند و تصریح می کند: «این ایده کاملا بکری است که در ایران ایجاد شده و در پژوهشگاه در حال اجرا است و در حال حاضر در کشورهای جهان از همان روشهایی که نام برده شد استفاده می شود، با این تفاوت که برخی از شرکت های خارجی هستند که در حین حفاری علاوه بر چاه های عمودی، چاه های افقی و مایل حفر می کنند، کاری که ما انجام نمی دهیم. بواقع آنها از یک نوع حفاری هوشمند استفاده می کنند که اطلاعات بهتری به آنها می دهد، اما شیوه کلی کار یکی است.»
    به گفته وی این پروژه از شهریور سال 1383 آغاز شده، مطالعات امکان سنجی آن به پایان رسیده و هم اکنون وارد مرحله طراحی شده است. داراب می افزاید: «این مرحله یک سال به طول می انجامد و در این مدت پروژه جدیدی تعریف می شود که شامل طراحی الکترونیکی و فیزیکی تراشه پویانما و تست آن در یک چاه مصنوعی است که در سطح زمین ایجاد خواهد شد.»

    وی می گوید: برای اجرای این طرح یک محدوده زمانی 5 سال تعیین شده است که سرانجام آن ساخت یک مخزن هوشمند است و با توجه به این که در مرحله نظری بیش از 80 درصد انتظارات ما برآورده شده است به آینده این طرح بسیار خوشبین هستیم.»
    اما آیا استفاده از این طرح محدودیت هایی را نیز به دنبال خواهد داشت یا در تمامی مخازن و شرایط قابل بکارگیری است؟ مهندس داراب در این زمینه می گوید: «این احتمال وجود دارد که فناوری مورد نظر در مخازنی با فشار بیش از 15 هزار" پی اس آی" قابل استفاده نباشد و ناچار به ایجاد تغییراتی در آنها باشیم، که برخی از مخزن های پارس جنوبی دارای چنین شرایطی هستند. اما چاه های نفت کشورهای حاشیه خلیج فارس دارای فشار 10 هزار پی اس آی هستند و این شیوه برای آنها کاملا مناسب است.»

    مسئله چگونگی برداشت از مخازن نیز امروزه به یکی از مسائل بسیار مورد توجه کارشناسان و متخصصان اکتشاف و برداشت نفت تبدیل شده است. چگونگی برداشت و رفتاری که با مخزن می شود در واقع بر عمر مخزن و میزانی که می توان از آن برداشت کرد تاثیر مستقیم می گذارد و از همین روست که مخزن ها را از نظر عمر به جوان، میانسال و پیر تقسیم کرده اند و معتقدند که در هر کدام از این دوره ها باید به شیوه ای مناسب همان دوره با مخزن برخورد کرد و به عبارتی مخزن را به چشم یک موجود زنده نگریست که سوء رفتار با آن می تواند به پایان عمر بهره برداری از مخزن در نیمه راه بیانجامد.
    داراب با اشاره به حجم عظیم مخازن ایران و اهمیتی كه هر گونه سرمایه گذاری در عرصه برداشت از مخازن نفتی می تواند داشته باشد می گوید: استفاده از فناوری مخزن هوشمند می تواند به ازدیاد برداشت 5 الی 15 درصدی منجر شود و این مسئله بویژه زمانی اهمیت پیدا می كند كه دریابیم برداشت ما از مخازن هیدروكربوری حدود 20 درصد است كه این رقم در مقابل میانگین برداشت در جهان یعنی 60 الی 70 درصد بسیار ناچیز است.

    اما یکی از مهمترین ویژگی های این پروژه استفاده از فناوری نانو در ساخت تراشه پویانما است، مهندس داراب در توضیح این مسئله می گوید: فناوری نانو در راهبرد کلی به دو دسته تقسیم می شود یکی فناوری بالا به پایین (تاپ داون) و دیگری فناوری پایین به بالا (باتم آپ) که بیشتر فرایندهای انجام شده در مقیاس نانو در کشور ما تا کنون به شیوه پایین به بالا کار شده است، یعنی ساختاری تشکیل و توسعه داده می شود. اما در ساخت تراشه پویانما از شیوه «آزمایشگاه روی تراشه» (لب آن چیپ) استفاده شده که جزیی از همین بخش نانو از بالا به پایین است، ملموس ترین مثال در این مورد افزایش ترانزیستورها روی سطح مشخصی از سیلیکون است که در تراشه های مختلف مورد استفاده قرار می گیرد و در اینجا ما توانسته ایم جریان های کوچکی را در مقیاس نانو بسازیم.»

    با توجه به حجم عظیم مخازن نفت وگاز کشور شک نیست که هر گونه سرمایه گذاری در عرصه حفاظت، برداشت مناسب و رواج فرهنگ درست بهره بردای از این مخازن در میان دست اندرکاران صنعت نفت از اهمیت بسیاری برخوردار است. از این رو چنانچه به کارگیری فناوری مخزن هوشمند آن گونه که دست اندرکاران این پروژه می گویند بتواند ازدیاد برداشتی در حدود 5 الی 10 درصد را به همراه داشته باشد، می تواند بخش قابل توجهی از این اختلاف را جبران کند و بهره وری از این منابع طبیعی پر ارزش را افزایش دهد. منابعی که ممکن است در صورت توجه نکردن به نکات کارشناسانه و استفاده بی رویه از آنها آسیب ببینند و یا برای همیشه در عمق خاک و دور از دسترس باقی بمانند.

    پروژه "ایجاد مخزن هوشمند بر اساس فناوری نانو" با همکاری پژوهشگاه صنعت نفت به عنوان کارفرما و شرکت پژوهشگران فناوری نانو به عنوان مجری طرح در دست اجراست.

  4. #44
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    ضرورت های استفاده از گاز CNG كلمات كليدي: جايگاه ها، مخازن، معايب، سوخت رساني

    از طبیعی فشرده (CNG) یکی از مناسب ترین و در دسترس ترین جانشین های بنزین به شمار می آید، به ویژه در ایران که با بهره برداری از همه منابع شناسایی شده تا حدود ۱۷۰ سال گاز طبیعی با بهای ثابت خواهد داشت، سوختی ایده آل است و در صورت گسترش مصرف، کشور را از واردات بنزین بی نیاز می سازد.
    گاز طبیعی نیز سوختی فسیلی است که به صورت گاز و یا گاز همراه با چاه های نفت یا مایعات حاوی گاز از چاه ها استخراج می شود. گاز طبیعی به طور عمده از متان (CH۴) تشکیل شده و دارای مقادیر ناچیزی اتان (C۶H۶)، پروپان(C۳H۸)، بوتان (C۴H۱۰) و پنتان(C۵H۱۲) است. متان، بی رنگ و بی بو است و با شعله ای کم رنگ و نسبتاً روشن می سوزد.

    گاز طبیعی تمیز ترین سوخت فسیلی است، زیرا به طور عمده فقط بخار آب و دی اکسید کربن تولید می کند. دمای احتراق خود به خود گاز طبیعی 649 درجه سانتی گراد است که 315 درجه سانتی گراد بالاتر از دمای خود اشتعالی بنزین است.
    گاز طبیعی فشرده، سوختی قابل استفاده در خودروها است و نسبت به بنزین مزیت ها و معایبی دارد. این سوخت اکتان بالایی دارد، تمیز می سوزد، قابل اندازه گیری است و معمولاً میزان تولید گازهای خروجی آن پایین است.

    اصولاً دو نوع جایگاه سوخت گیری CNG متداول برای خودروها وجود دارد: جایگاه های سوخت گیری سریع و سوخت گیری آرام. در جایگاه های سوخت گیری سریع، زمان سوخت گیری خودروها کم است(2 تا 3 دقیقه برای هر خودرو). در جایگاه های سوخت گیری آرام، عملیات سوخت رسانی به خودرو در 6 تا 8 ساعت انجام می شود و برای سوخت گیری در پارکینگ منازل یا مکان هایی که خودروها در طول شب پارک می شوند، مناسب است.

    ایستگاه CNG، گاز مورد نیاز خود را از شبکه گاز شهری دریافت می کند. نخست گاز وارد اتاقک(metering) و میزان گاز ورودی اندازه گیری و ***** می شود، سپس گاز ***** شده وارد دستگاه هایی به نام خشک کن(Dryer) می شود. این دستگاه را می توان در انتهای مسیر نیز قرار داد، اما حالت بهینه استفاده از آن در ابتدای خط است. کار دستگاه خشک این است که رطوبت موجود در شبکه گاز شهری را جذب کند و گاز خشک شده ای را به درون کمپرسور می فرستد. دلیل این امر این است که آب بزرگ ترین دشمن تجهیزات CNG است. آب می تواند سبب خوردگی اتصالات و جدار داخلی سیلندرها شود. آب موجود در گاز فشرده در فشار 200 بار در 15 درجه سانتی گراد یخ می زند و تشکیل بلورهای یخ می تواند موجب انسداد اریفیس های کوچک و یا خطوط انتقال گاز طبیعی فشرده شود. خشک کن های مورد استفاده در جایگاه های CNG معمولاً از نوع جذبی هستند و درون برج های دو قلوی آنها معمولاً مواد جذب کننده رطوبت مانند گلیکول یا سیلیکازل قرار داده می شود که با یک سیستم کنترلی به طور متناوب، عمل جذب رطوبت گاز ورودی را انجام می دهند.

    پس از این مرحله، کمپرسور گاز خشک را می مکد و در 3 تا 4 مرحله گاز را از فشار حدود 250-220(psi) به 3000 تا 3600(psi) می رساند. کمپرسورهای مورد استفاده در ایستگاه های سوخت رسانی CNG معمولاً از نوع رفت و برگشتی هستند که دارای مزیت های سهولت تعمیرات به دلیل اشتراک سازکار کار آنها با بسیاری از کمپرسورهای رفت و برگشتی در صنایع دیگر، امکان ساخت به صورت یک یا چند مرحله ای در یک پوسته واحد، کارآیی قابل قبول این کمپرسورها در حد بالا و دبی های نسبتاً پایین و امکان استفاده از موتورهای گازسوز یا موتورهای الکتریکی به عنوان نیروی محرک است.

    از معایب آنها بزرگی ابعاد و ارتعاش های زیاد آنها است که می باید به عنوان عوامل اساسی به هنگام محاسبه شاسی ، قاب و خود پوسته کمپرسور لحاظ شوند. گاز در هر مرحله فشرده سازی به دلیل اصطکاک مولکول های گاز با یکدیگر و با جدار سیلندرها به شدت گرم می شود؛ در نتیجه می باید در میان مسیر عبور آن خنک کن میانی یا intercooler قرار داد. این کولرها می باید توان جذب 85 تا 90 درصد گرمای حاصل از عمل فشرده سازی در هر مرحله را داشته باشند. کولرها به صورت هوا خنک (با کمک فن و فین های خنک ساز)یا آب خنک (با استفاده از رادیاتور) انتخاب می شوند. یاتاقان ها و رینگ های پیستون ها می باید پیوسته روغن کاری شوند که انواع روغن کاری به دو دسته روغن کاری تحت فشار و روغن کاری پاششی تقسیم می شود. روغن کاری تحت فشار، روش بهتری شمرده می شود. دوره کارکرد رینگ های کمپرسورها با روغن کاری تقریباً 8000 ساعت است. برای جداسازی روغن موجود در گاز *****های روغن و جداسازهای دقیق تر به کارمی روند. کمپرسورهای مورد استفاده در ایستگاه های CNG معمولاً 200-2 مترمکعب در ساعت، ظرفیت تولیدگاز فشرده دارند.

    نیروی محرک کمپرسورهای CNG بیشتر موتور الکتریکی است. این موتورها با برق سه فاز کار می کنند و نیروی تولیدی توسط آنها معمولاً با استفاده از تسمه ها و قرقره ها، چرخ دنده ها و چرخ زنجیر به کمپرسور انتقال داده می شوند. انتقال نیرو با کوپلینگ ها، روش بهتری برای انتقال نیرو به شمار می آید، زیرا ارتعاش کمتری دارد و هم محوری را دقیق تر و طولانی تر نگاه می دارد. حداکثر توان مورد مصرف برای الکتروموتورهای کمپرسورها 250 اسب بخار است که با توجه به توان مورد نیاز کمپرسور انتخاب می شوند.

    مخازن بازیافت
    برای این که پس از خاموش شدن کمپرسور به هر دلیلی گاز فشرده شده در پشت سیلندرها باقی نماند، لوله کشی جداگانه به مخزن بازیافت انجام می پذیرد. گاز تخلیه شده در این مخزن دوباره به وسیله رگولاتوری به جریان ورودی بازگردانده می شود.

    مخازن
    در مرحله پایانی تراکم گاز با فشاری در حدود (psi)3600 یا 250 بار کمپرسور را ترک می کند. خودروها با فشاری حدود 200 بار سوخت گیری می کنند. نصب یک مخزن فشار بالا در ایستگاه زمان سوخت گیری به میزان عمده ای از کاهش و خاموش و روشن شدن های پی در پی کمپرسور پیشگیری می کند و در نتیجه عمر کاری کمپرسور افزایش می یابد. مخازن ذخیره سازی CNG در ایستگاه را معمولاً به سه دسته تقسیم می کنند. این سه دسته عبارتند از:

    سیلندرهای فشار بالا (High pressure)، سیلندرهای فشار متوسط (Medium Pressure) و سیلندرهای فشار پایین (Low Pressure). با این آرایه مخازن ذخیره در جایگاه های سوخت گیری، گازرسانی به مخزن سوخت خودروها در زمان کمتری انجام می شود و بسته به فشار و مقدار گاز موجود در مخزن خودرو به صورت آبشاری (Cascade) ابتدا از سیلندرهای ذخیره فشار پایین، سپس از سیلندرهای فشار متوسط و در پایان از سیلندرهای ذخیره فشار بالا سوخت گیری انجام می شود.
    سامانه اولویت بندی سوخت گیری، وظیفه کنترل و هدایت گاز فشرده شده از مخازن به توزیع کننده ها(dispensers) را بر عهده دارد و مخازن خالی شده را به ترتیب نیاز، پر می کند.

    توزیع کننده(Dispenser)
    گاز فشرده شده از طریق نازل های توزیع کننده ها وارد خودرو می شود. سیستم های کنترلی پیشرفته ای روی Dispenser ها نصب شده اند که می توان به کمک آنها میزان سوخت تزریقی را اندازه گیری کرد. حس گرهای توزیع کننده این قابلیت را دارند که زمان پرشدن مخزن CNG خودرو را حس و تزریق سوخت را متوقف کنند تا از سرریز سوخت پیشگیری شود. معمولاً فشار گاز psig 3600 در کمپرسورها تولید می شود و فشار سوخت گیری psig 3000 حدود (200 بار) است. ظرفیت مخازن معمول در خودروها در دمای F ْ 70، psig 3600، 3000 و 2400 است. برای حجم ثابتی از گاز، فشار و دمای آن به طور مستقیم به هم وابسته اند، یعنی با افزایش دما فشار نیز افزایش خواهد یافت. این نکته اهمیت به سزایی دارد و می باید در طراحی مخازن در نظر گرفته شود.
    دمای گاز درون مخزن به دلیل اصطکاک میان خود مولکول های گاز و مولکول های گاز و جدار سیلندر به هنگام سوخت گیری افزایش خواهد یافت، در نتیجه پس از کاهش دما، امکان افت فشار خواهیم داشت. در توزیع کننده های پیشرفته تر سعی بر این است که این افت فشار کاهش یابد، اما هنوز تحقیقات کاربردی در این زمینه ادامه دارد.

    توزیع کننده ها دارای بخش های متفاوتی هستند که در اینجا برخی از آنها را شرح می دهیم:

    جریان سنجی(flowmeter): مقدار گاز وارد شده به خودرو را محاسبه می کند.
    تئوری عملکرد این حس گرها شتاب کوریولیس است. حس گرهای دیگری نیز وجود دارند که سرعت صوتی گاز در یک گلوگاه ونتورتی را اندازه می گیرند و به این وسیله میزان جرم گاز را تعیین می کنند. سنجش با استفاده از میزان کیلوگرم گاز مصرفی، بسیار دقیق و مناسب تر خواهد بود و برخلاف تصورعمومی که قیمت گاز از قیمت سوخت مایع معادل بالاتر است، زیرا یک کیلوگرم گاز 50 درصد بیشتر از یک لیتر گازوییل انرژی دارد، گاز طبیعی به لحاظ صرفه اقتصادی بسیار مناسب است. محل نصب توزیع کننده می باید تاحد امکان نزدیک به خودرو باشد تا از دقت این وسیله کاسته نشود.

    حس گرهای فشار
    روی شیلنگ های توزیع کننده نصب می شوند تا فشار درون مخازن خودروها را اندازه بگیرند. معمولاً به دلیل سرعت بالای گاز در داخل لوله های توزیع کننده، حس گرها نمی توانند فشار دقیق مخازن خودروها را ثبت کنند.

    صفحه نمایش
    میزان گاز انتقال یافته به مخزن خودرو را به اپراتور نشان می دهد و بسته به نوع بورد الکترونیک، قیمت کل و قیمت هر واحد سوخت را نیز می تواند نمایش دهد.
    میزان گاز تزریقی می تواند بر حسب جرم(پوند یا کیلوگرم) حجم (scf) ظرفیت گرمایی و یا میزان گالن گازوییل یا بنزین معادل محاسبه شود.

    اتصال های قطع کننده
    هنگام بروز خطر یا دورشدن ناگهانی خودرو در حالی که شیلنگ به خودرو متصل است، بی درنگ جدا می شود و جریان قطع می شود.

    شیلنگ
    شیلنگ های ایستگاه های CNG معمولاً از فولاد ضد زنگ و مواد مصنوعی به همراه پلاستیک فلوئوری ساخته می شوند. جنس مواد شیلنگ هادی الکتریسیته ساکن است و 5/1 برابر فشار پیشنهادی سازنده تست می شود.

    نازل سوخت رسانی
    نازل ها معمولاً از مواد مقاوم در برابر خوردگی ساخته می شوند و به وسیله برنج و آهن ضدزنگ سخت کاری می شوند. *****ی برای جلوگیری از ورود ذرات خروجی نیز در نازل ها تعبیه می شود.

  5. #45
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    تثبیت میعانات گازی (Condensate Stabilization System) كلمات كليدي: ميعانات گازي، هيدروكربن ها، عمليات تثبيت

    مقدمه؛
    گاز طبیعی که از مخازن گازی استحصال می شود عمدتاً حاوی حجم قابل ملاحظه ای میعانات گازی است. مخصوصاً زمانی که حجم برداشت گاز از مخزن زیاد باشد. میعانات گازی به جريان هيدروكربني مايع گفته مي شود که در ذخایر گاز طبیعی وجود دارد و به صورت رسوب و ته ‌نشین در گاز استخراجی يافت مي شود و عمدتاً از پنتان و هیدروکربنهای سنگینتر (+C5) تشکیل شده و دارای گوگرد پایین مي باشد و معمولا عاری از انواع فلزات است و تقریبا نیمی از آن را نفتا تشکیل می‌دهد.

    میعانات گازی بر خلاف بوتان و پروپان نیازمند شرایط ویژه برای مایع ماندن نیستند و به شیوه‌های مختلف قادر به تبدیل به نفت سبک ، بنزين ، سوخت جت و... هستند. در قياس با پالايشگاه نفت خام ، در پالايشگاه ميعانات گازي، فرايندهاي تبديلي و پالايشي كمتر است بنابراين هزينه سرمايه گزاري آن نصف هزينه سرمايه گزاري پالايشگاه نفت خام است.

    ارزش حرارتي ناويژه هر ليتر از ميعانات گازي حدودBTU 4/32706مي باشد كه تقريباً معادل با ارزش حرارتيm3 826/ . گاز طبيعي خط لوله اول سراسري است . بنابراين، این محصول به دلیل داشتن ارزش حرارتی بالا از اهمیت قابل توجهی برای صادرات برخوردار می باشد. به گونه ای که صادرات آن می تواند هزینه سرمایه گذاری اولیه یک پالایشگاه گازی را در ظرف مدت زمان کوتاهی برگرداند به شرط آنکه مشخصه فنی مطلوب را داشته باشد.

    بر اساس برآورد موسسه تحقیقات انرژی "فکتس" ،‌ مستقر در هانولولوی آمریکا، ظرفیت تولید میعانات گازی ایران از 95 هزار بشکه در روز در سال 2001 ، نزدیک به یک میلیون بشکه در روز در سال 2013 خواهد رسيد.
    بيشترين ميزان توليد ميعانات گازي ايران از ميدان گازي پارس جنوبي مي باشد. اين ميدان گازي ، بزرگ‌ترين منبع گازي است که بر روي خط مرزي مشترک ايران و قطر در خليج‌فارس و در فاصله 105 کيلومتري ساحل جنوبي ايران قرار دارد. مطالعات انجام شده نشان مي‌دهد که بيش از 14 تريليون متر مکعب گاز طبيعي و افزون بر 18 ميليارد بشکه ميعانات گازي را در خود جاي داده و روزانه 200 هزار بشكه ميعانات گازي توسط فازهاي يك تا پنج از اين ميدان توليد مي شود و بنا به گزارش خبر گزاري مهر به نقل از مدير عامل شركت نفت و گاز پارس جنوبي تا كنون 200 ميليون بشكه ميعانات گازي از پارس جنوبي به ارزش 10 ميليارد دلار صادر شده است.

    باتوجه به حجم عظيم ميعانات گازي توليدي در كشور ، بررسي كاربردي براي رسيدن به يك مشخصه فني مطلوب براي اين محصول جهت استفاده بهينه بسيار ضروري است. در اين مقاله سعي شده به صورت خلاصه فرايندهاي تثبيت ميعانات گازي جهت رسيدن به شرايط فني مطلوب بررسي و معرفي گردد.

    • هدف از تثبیت میعانات گازی( Condensate Stabilization)
    میعانات گازی پس از جداسازی از گاز طبیعی حاوی عناصر فراری از هیدروکربنهای سبک همچون متان، اتان و... می باشد که چنانچه در شرایط محیطی مناسب قرار گیرند ، می توانند از فاز مایع جدا شده و باعث دو فازی شدن سیستم و پیوستن به فاز گازی شوند که این امر اثرات نامطلوبی درکیفیت محصول،نگهداری وانتقال به همراه خواهد داشت. بنابراین به منظور رسیدن به شرایط مطلوب جهت نگهداری، انتقال و فروش بایستی به صورت پایدار تک فازی مایع در آید.

    به مجموعۀ این عملیات پایدارسازی اصطلاحاً Condensate Stabilization , یا تثبیت میعانات گازی گفته می شود، این عملیات به سه دلیل انجام می شود:

    1- حذف هیدرروکربنهای سبک وقابل تبخیر(عناصر فرار) و یا به عبارتی دیگر بازیافت متان، اتان، پروپان و تاحدود زیادی بوتان يا LPG از جریان هیدروکربنی مایع (میعانات گازی) می باشد.

    2- کاهش فشار بخار سیال و رساندن آن به یک (Reid Vapor Pressure) RVP معین به عنوان یک مشخصه فنی ، به گونه ای که بتوان از دو فازی شدن سیال جلوگیری به عمل آید .

    - RVP روش خاصی برای مشخص کردن نوع برشهای هیدروکربنی است ، در روش Reid سیال هیدروکربنی در یک محفظه با فشار متغیر قرار می گیرد و تا دمای oC 8/37 حرارت داده می شود، پس از مدتی فشار بالای این سیال ثابت می گرددکه این فشار ، RVP سیال را مشخص مي كند. به عبارت دیگر RVP را می توان به عنوان فشار بخار سيال در تعادل با فاز مايع در دماي (oF 100) oC 8/37 ،كه کمتر از فشار محیط مي باشد تعریف کرد به گونه ای که در شرایط انتقال و نگهداری در ناحیه تک فازی مایع قرار گیرد. میزان RVP در فصول گرم و سرد سال به علت تغیير در مقدار ترکیبات تشکیل دهنده جریان هیدروکربنی متفاوت خواهد بود این میزان برای فصل زمستان حدود psia 12و برای فصل تابستان حدود psia10 میباشد .

    شکل 1 نمودارحالت تعادلی فشار- دمای میعانات گازی را قبل و بعد ازعملیات تثبیت براي يك تركيب از ميعانات گازي كه در جدول 1 آمده ، نشان می دهد. همچنین این نمودار نشان دهنده کاهش فشار بخار سیال با حذف عناصرسبك می باشد.

    3- کاهش میزان آب همراه با میعانات به کمتر ازppmw 500 و حذف مرکپتان و عناصراسیدی از سیال (البته قابل ذکر است که میعانات گازی به صورت طبیعی حاوی مقادیرخیلی کمی از , H2S CO2 نسبت به جریان هيدروكربني گازی می باشند. )

    مهندسی شيمی و نفت  2

    • روشهای تثبیت میعانات گازی(Stabilization System)
    عمده ترین روشهایی که برای تثبیت میعانات گازی استفاده می شوند عبارتنداز جداسازی براساس ایجاد شرایط تعادل فازی بین بخار ومایع (Flash Vaporization) و جداسازی برپایه اختلاف نقطه جوش هیدروکربنها(Stabilization by Fraction ) .

    1- Flash Vaporization:
    در این روش، تثبیت میعانات گازی براثر عمل تفکیک عناصر فرار از هیدروکربنهای سنگینتر براساس تعادل فازی بین بخار و مایع در یک سری Flash Tank تارسیدن به یک RVP معین صورت می پذیرد.
    پس از جداسازی جریان مایع از جریان گازی درون Slugcatcher ، جریان مایع برای عمل تفکیک میعانات گازی از آب و محلول MEG ( که به منظور جلوگیری از یخ زدگی جریان گاز به خطوط لوله تزریق می شود) و گازهای باقیمانده وارد یک جداکننده سه فازی می شود.

    جریان هیدروکربنی مایع (میعانات گازی) جداشده، که در اثر افت فشار ناگهانی با عبوراز یک شیر فشار شکن به صورت دو فازی در آمده ، وارد اولین Flash Tank می شود سپس عمل تفکیک دو فاز بر اساس تعادل فازی بین بخار و مایع در دما وفشار نهایی جریان، درون Flash Tank صورت می پذیرد . بدین گونه می توان عناصر فرار را از جریان اصلی مایع حذف نمود. جریان مایع خروجی برای جداکردن عناصر سبک بیشتر، وارد Flash تانک بعدی که در فشار پایین تری عمل می کند می شود واین عملیات تا رسیدن به یک RVP معین تکرار می گردد.

    جریانهای گازی جدا شده از بالای Flash Tank ها که شامل عناصر سبک هیدروکربنی می باشد پس از تامین فشار درکمپرسورها به سیستم فراورشی گاز فرستاده می شود و جریان آب و محلول گلایکول جدا شده از جداکننده سه فازی به منظور احیای گلایکول به واحد MEG Recovery ارسال می شود همچنین به عنوان یک مشخصه فنی میزان آب همراه با میعانات گازی تثبیت شده نبايستی بیشتر ازppmw 500 باشد.
    شکل 2 یک سیستم ساده از تثبیت میعانات گازی به روش Flash Vaporization نشان می دهد.

    مهندسی شيمی و نفت  2

    2- Stabilization by Fraction
    دراین روش جدایش عناصر سبک و قابل تبخیر از هیدروکربنهای سنگین براساس اختلاف در نقطه جوش هیدروکربنها صورت می پذیرد.
    این سیستم از یک جداکننده سه فازی که Stabilizer Feed Drum نیز نامیده می شود ، یک برج تثبیت کنندهStabilizing Tower (که می تواند به صورت سینی دار و یا پر شده از پکینگ باشد) ، یک Reboiler در پایین برج ، یک خنک کننده (Condenser) در بالای برج ویکسری مبدلهای حرارتی و پمپها تشکیل شده است.

    جریان مایع جداشده از جریان اصلی گاز در قسمت Slugcatcher که شامل میعانات گازی ، آب و گلایکول می باشد به یک جداکننده سه فازی ارسال می گردد وجریان هیدروکربنی پس از تفکیک به عنوان خوراك اصلي به قسمت بالای برج تثبیت Stabilizer Column فرستاده می شود. اين برج به گونه اي است كه فضا و زمان لازم براي تبادل جرم و انرژي بين دو فاز مايع و بخار را فراهم ميكند. چنانچه برج از نوع سيني دار باشد ، سينيهاي بالاي سيني خوراك، نقش تقطيري و سينيهاي زير سيني خوراك نقش جداسازي و يا دفع هيدروكربنهاي ناپايدار و سبك را از جريان هيدروكربني دارد. شكل 3 يك نمونه از برج تثبيت همراه با يك Condenser دربالا و يك Reboiler در پايين برج نشان مي دهد.

    مهندسی شيمی و نفت  2


    دمای Reboiler در این سیستم به گونه ای تنظیم شده که سبکترین هیدروکربن در قسمت تحتانی برج (به عنوان جریان محصول) پنتان وسنگین ترین هیدروکربن درجریان گازی بالای برج، بوتان باشد.
    جريان خروجي پايين برج بعد از تبادل انرژي با جريان خوراك ورودي و رسيدن به دما و فشار معين به عنوان محصول نهايي تثبيت شده، شناخته مي شود. قسمتي از جريان بخار بالاي برج كه پس از تبادل حرارتي در قسمت خنك كننده به صورت مايع در آمده براي تنظيم دماي جريان بالاي برج وكنترل خلوص جريان به عنوان Reflux به برج برگشت داده مي شود و بخارات باقي مانده بعد از تبادل حرارتي در خنك كننده به عنوان جريان هيدروكربني سبك كه عمدتاً شامل متان ،اتان، پروپان و بوتان مي باشد به سيستم فراورشي گاز فرستاده مي شود.

    قابل ذكر است كه جریان هیدروکربنی قبل از ورود به برج ابتدا نمک زدایی شده وبا استفاده از انرژی جریانهای گرم در مبدل های حرارتی افزایش دما پیدا می کند . ناگفته نماند كه جريان خروجي از پايين برج Debutanizer كه اكثراً شامل C5+مي باشد ، مي تواند به عنوان جريان خوراك دوم وارد برج تثبيت گردد. شکل 4 یک سیستم ساده از تثبیت میعانات گازی به روش Fractionنشان می دهد.
    با مقايسه بين اين دو روش مي توان گفت: روش Fractionنسبت به روش قبل برای رسيدن به يك RVP معين، دقیق تر و از لحاظ اقتصادی به صرفه می باشد ولي در گذشته به دليل سادگي كار عمدتاً روش Flash Vaporization متداول بوده.

    مهندسی شيمی و نفت  2

  6. #46
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    علمی كردن صنعت نفت كلمات كليدي: صنعت نفت، علمي شدن، علمي كردن، بهره‌برداري

    درحالی‌كه ۹۰درصد درآمد ارزی كشور ما از محل نفت و گاز تأمین می‌شود، اقتصاددانان، فرهیختگان و روزنامه‌نگاران، متناسب با این حجم از درآمد، نسبت به اقتصاد و صنعت نفت، اهتمام جدی نمی‌ورزند. روشن است كه مقوله راهبرد و استراتژی در ایران بدون بررسی عمیق مسئله نفت تبیین‌شدنی نیست. از یك‌سو حیاتی بودن نفت برای تمدن و ازسوی دیگر پایان‌پذیری مخازن نفت به امری بدیهی تبدیل شده است و حتی كشورهای غربی ـ دولت‌ها و كارشناسان مستقل ـ نیز مطالب زیادی در این‌باره نوشته‌اند. در همین راستا محمدخاتمی در اوایل دوران ریاست‌جمهوری خود این حقیقت را برملا كرد كه مرض مزمن اقتصاد ایران وابستگی به درآمد نفت است و فرهنگِ "نفت ثروت است، نه درآمد" در هشت سال دولت‌ اصلاحات تا حدی احیا گردید و گسترش یافت كه یكی از دستاوردهای آن صندوق ذخیره ارزی بود.
    می‌دانیم كه در دنیای پرنوسان قیمت‌ها هنوز به تئوری ارزش ذاتی نفت دست نیافته‌ایم، به‌طوری‌كه سال‌ها قیمت یك بشكه آب دو برابر قیمت یك بشكه نفت بود و افزایش اخیر قیمت نفت این نسبت را به سمت تساوی پیش برد.(۱)

    از ملی‌شدن نفت تاكنون، مملكت ما روند گذار از اقتصاد تجارت نفت به اقتصاد صنعت نفت را طی می‌كند كه هنوز راهی بس طولانی در پیش روی داریم. غربی‌ها در تحلیل‌هایشان ویژگی ایران را بورژوازی تجاری و در رأس آن تجارت نفت می‌دانند و بر این اعتقادند كه اگر تحریم جدی صورت پذیرد نارضایتی در بین مردم به‌‌تدریج به شكاف جدی در نظام خواهد انجامید و در واكنشی ناگزیر، مردم نیز مردد و منفعل می‌گردند. چنین وضعیتی می‌تواند پیش‌زمینه وقوع حوادثی نظیر كودتای ۲۸ مرداد۱۳۳۲ باشد.(۲)

    به نظر می‌رسد تنها راه اصلاح ساختاری اقتصاد ایران كه ما را از مخاطرات داخلی و خارجی مصون می‌سازد، شتاب‌گرفتن در گذاری است كه تجارت نفت را به صنعت نفت تبدیل می‌كند تا از این مزیت نسبی كشور، به‌طور كامل بهره‌مند شویم. امیدوارم تا آنجا كه دانش و تجربه‌ام در امر اقتصاد صنعت نفت یاری می‌كند بتوانم مكانیزم این گذار به اقتصاد صنعت نفت را روشن سازم؛ باشد كه صاحب‌نظران و كارشناسان، این نوشتار را از نقد و نظر خود محروم ننمایند.

    ● تجربه ۲۵۰ ساله
    پس از جنگ شش روزه اعراب و اسراییل در سال ۱۳۴۶، از طرف شركت نفت لاوان جهت آشنایی با گوشه‌هایی از صنعت نفت و گاز امریكا به آن كشور مسافرت كردم. به‌دنبال اشغال سرزمین‌های فلسطین، مصر و سوریه توسط ارتش اسراییل، جهان با تحریم نفت ازسوی اعراب روبه‌روشد. دولت فدرال امریكا به شركت‌های نفتی اجازه داده بود تا از چاه‌های نفت بهره‌برداری بیشتری بكنند تا كمبود نفت جبران شود، كمپانی‌های نفتی از این موضوع بسیار خوشحال بودند. مهندسان، تكنسین‌ها و مسئولان این شركت‌ها در پاسخ به سوال من در مورد علت خوشحالی آنها گفتند هر چاه نفتی در امریكا شناسنامه و پرونده‌ای در دولت فدرال دارد كه با كارشناسی‌های دقیق كه توسط مهندسان مخزن نفت انجام شده میزان بهره‌برداری علمی روزانه هر چاه مشخص شده است و حق عدول از این میزان را نمی‌دهد و در صورت عدول با دادگاه سروكار خواهیم داشت،

    چرا كه تولید بی‌رویه غیر قانونمند و غیرروال‌مند از هر چاه موجب می‌شود كه با ریزش مخزن، تولید آب نمك، افت فشار و عوارض منفی دیگر روبه‌رو گردیم و به‌دنبال آن نه‌تنها دلارهای زیادی برای بازیابی چاه‌ها هزینه می‌شود، بلكه عمر مخزن نفت نیز كوتاه می‌شود. آنها می‌گفتند هر سنگ مخزنی قاعده و رفتاری دارد و نبایستی به آن فشار بیش از حد وارد آورد. سعی مهندسان بر این بود كه نقطه اوج پایانی هر مخزن را به تأخیر بیندازند، ولی شركت‌های نفتی از منظر سودجویی از بهره‌برداری بیش از حد بعد از جنگ خوشحال بودند.

    امریكا نه‌تنها اولین و قدیمی‌ترین كشور نفت‌خیز جهان می‌باشد، بلكه در عرصه انباشت تجربیات صنعت نفت نیز تاكنون حرف اول را زده است. به‌منظور حفظ و صیانت مخازن نفت در امریكا، قانونی به‌‌نام "قانون حفاظت"(۳) تدوین شده است، به‌طوری‌كه توانسته‌اند تا آنجا كه ممكن است دانش و تجربه علمی خود را وارد عرصه صنعت‌نفت كنند. این دستاورد علمی ـ تجربیِ ۲۰۰ ساله امریكا را به‌عنوان یك ره‌آورد به ایران آوردم ولی متأسفانه در ایران معادلات به‌گونه دیگر بود؛ بهره‌برداری از چاه‌های نفت تابع اهداف سیاسی و استراتژیك نظام شاهنشاهی بود. میزان بهره‌برداری از هر چاه توسط خط‌مشی‌های وابسته تعیین می‌شد و نه تجربیات علمی ۲۰۰ ساله رفتار مخزن. مدیران امریكایی شركت كه به‌شدت نسبت به رفتار مخازن نفت كشورشان حساس بودند، ولی در ایران در برابر تولید بی‌رویه مخزن ـ آن هم بدون بازیابی به‌وسیله تزریق گاز یا آب ـ نه‌تنها حساس نبودند، بلكه مشوق بهره‌برداری بیشتر بودند.

    در یكی از روزهای توفانی خلیج‌فارس، دستوری از تهران مبنی بر افزایش تولید نفت به سكوی بهره‌برداری ساسان (سلمان) داده شد. اعتراض مدیر سكوی بهره‌برداری (آقای هاوكینز) به‌جایی نرسید؛ وی مدعی بود دریا توفانی و غیرایمن است و براساس آیین‌نامه نباید سوار كشتی شد و به سر چاه رفت، ولی درنهایت دستور باید اجرا می‌شد.
    پیش‌بینی آقای هاوكینز درست درآمد و وقتی به سر چاه رفت، طناب كشتی در اثر توفان پاره شد و در برخورد با پیشانی آقای هاوكینز او را بیهوش كرد و امواج خلیج او را در میان كشید و فردای آن روز غواصان جسد او را یافتند و من شاهد این منظره دردناك بودم. این امریكایی فقیر كه برای پولسازی به ایران آمده بود، قربانی سودجویی نفتی‌هایی شد كه تولید بی‌رویه را بر رعایت آیین‌نامه‌ها، تجربیات و قوانین علمی ترجیح می‌دادند. آنچه مرا به فكر وامی‌داشت گوش ناشنوای مسئولان ما و بی‌تعهدی آنان نسبت به مسائل ملی و اصول علمی بود. در یكی از روزها كه با دانشجوی كارآموزی به سر چاه نفت رفتم، پرسیدم آیا علت این صدای پرهیاهوی سر چاه را می‌دانی؟ او جواب‌های علمی درستی به من داد. ادامه دادم این صدای مردم ایران است كه می‌‌گویند چرا نفت‌های این سرزمین، بی‌رویه، خام و بدون پالایش تولید و صادر می‌گردد.

    مشاهده چنین نابسامانی‌هایی‌، این رویكرد را در من تقویت می‌كرد كه اصلاح ساختار این سرزمین، تنها از راه سیاسی امكان‌پذیر است؛ سال ۱۳۵۴ در زندان اوین آقای پرویز ثابتی رئیس اداره سوم (عملیات) ساواك برای سركشی وارد سلول من شد، از سوابق و وضعیت پرونده‌ام پرسید كه در دادگاه نظامی به حبس ابد محكوم شده‌ بودم. او گفت حكم دادگاه نشان‌دهنده چیزی نیست، همه كارها دست سازمان امنیت است. در ادامه به من اعتراض كرد كه چرا علیه نظامی كه تو را برای كار و تجربه‌اندوزی به امریكا فرستاده است مبارزه می‌كنی و چه انگیزه‌ای تو را به این سمت می‌كشد؟ در پاسخ به او گفتم از اتفاق همان آموخته‌های امریكا برایم دردسر شد، چرا كه می‌خواستم تجربه ۲۰۰ ساله صنعت‌نفت امریكا را در ایران تحقق دهم و این امكان نداشت، چرا كه آنجا از مخزن حفاظت می‌كردند و در اینجا تنها تولید بیشتر نفت خام برای صادرات و فروش بیشتر اهمیت دارد.

    اما چندی بعد تولید بی‌رویه نفت‌خام ایران به شش میلیون بشكه در روز رسید، بدون آن‌كه به فكر ترمیم مخازن و چاه‌ها باشند و این فاجعه فشار مخازن نفتی را به‌شدت كاهش داد. امروزه بررسی مخزن آغاجاری سیر غم‌انگیزی را نشان می‌دهد، به‌طوری‌كه اگر گاز یا آب به آن مخزن تزریق نشود ۵ میلیارد بشكه نفت‌خام مخزن، قابل بهره‌برداری نخواهد بود.(۴) مخزن نفت به مادری می‌ماند كه شیره جان خود را كاخ حیات فرزند می‌سازد، اما آنگاه كه از كار می‌افتد و فرسوده می‌شود، هنگامی كه همسرش را از دست می‌دهد، از خانه كلنگی باقی‌مانده طبق قوانین موجود سهمی از زمین نمی‌برد و تنها از امارت آن كه ارزشی ندارد بهره‌مند می‌گردد و هیچ تضمینی در وفاداری فرزندانش كه محصولات اویند به او نیست. كدام دلیل علمی یا عقلی و منطقی حكم می‌كند كه تمام توسعه و رفاه ما از مخازن نفت باشد و این‌گونه نسبت به مخازن ـ كه در همه دنیا به حق آن را مادر صنعت نفت می‌دانند ـ بی‌توجهی شود؟

    در سال‌های ۱۳۶۵ـ۱۳۶۴ رقابتی بین اعضای اوپك بر سر افزایش سهم صادرات در اوپك به‌وجود آمد؛ به كشوری كه ذخایر بیشتری داشت سهم بیشتری تعلق می‌گرفت، بنابراین كشورهای عضو اوپك براساس محاسبات جدیدی به افزایش آماری ذخایر خود پرداختند. نتیجه این رقابت، افزایش تولید نفت كشورهای عضو اوپك بود و این افزایش به كاهش قیمت نفت انجامید. متأسفانه در این تجربه نیز به مهندسی و رفتار مخازن توجهی نشده و بایستی میلیاردها دلار صرف بازسازی مخازن شود.


    پی‌نوشت‌ها:
    ۱ـ ایران و سراب‌های چهارگانه نفت، چشم‌انداز ایران، شماره ۱۳.
    ۲ـ كودتای ارزان چرا و چگونه؟! چشم‌انداز ایران، شماره ۲۸.
    ۳ـ The low conservation.
    ۴ـ فصلنامه انرژی، موسسه مطالعات بین‌الملل انرژی، شماره ۴، عنوان مقاله "ارزیابی اقتصادی پروژه‌های تزریق گاز به مخازن نفتی كشور."
    ۵ـ ماده سیاهی كه نفت به آن وابسته است، نویسنده: لری الیوت، منبع: گاردین.
    ۶ـ محاسبات دكتر فشاركی كارشناس مسائل نفتی و دیگر منابع.

  7. #47
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    انتقال گاز طبیعی با فناوری های جدید كلمات كليدي: CNG, GTL, هيدرات، انتقال گاز طبيعي

    انتقال گاز به نقاط دوردست، همواره با مشکلات فراوانی روبه روبوده است. امروزه فناوری ال.ان.جی به عنوان راهکاری بسیار اقتصادی و قابل اطمینان در این زمینه مطرح است، اما پیشرفت های اخیر در زمینه استفاده از سایر فناوری ها نیز سبب شده است که استفاده از روش هایی نظیر CNG(گاز طبیعی فشرده شده) و هیدرات هم به عنوان راه حلی برای انتقال گاز به مناطق طولانی مطرح شوند.

    بدون شک گاز طبیعی منبع مهم تامین انرژی در قرن جدید است. امروزه فناوری های بسیاری برای استحصال، انتقال و به کارگیری از منابع گازی رشد یافته اند. توسعه سریع صنعت گاز نیز از فناوری های مهمی تأثیرپذیرفته است که از اواسط قرن بیستم مطرح شده اند. انتقال گاز طبیعی به واسطه ماهیت گازی آن با دشواری روبه رو است و حتی استفاده از ساده ترین روش انتقال یعنی خطوط لوله در فواصل طولانی با مشکلات زیادی روبه رو می شود. با توجه به توانایی های موجود فناوری برای انتقال گاز به مناطق دوردست، روش ال.ان.جی یا گاز طبیعی مایع شده به عنوان یک روش اقتصادی، توانسته است دشواری حمل گاز را تا حد زیادی برطرف سازد.

    برخی از کارشناسان تبدیل گاز به فرآورده های مایع (GTL) را نیز راهکاری مناسب برای انتقال گاز به بازارهای دوردست بیان می کنند، زیرا معتقدند با این که هنوز فناوری یا تبدیل گاز به فرآورده های مایع به طور گسترده مورد استفاده کشورهای دارنده گاز قرار نگرفته ، اما حمل فرآورده های مایع به بازارهای مصرف بسیار ساده تر و کم هزینه تر از روش تبدیل ال.ان.جی است. در فناوری GTL، گاز طبیعی در یک رشته فعل و انفعالات شیمیایی به مایعات میان تقطیر هیدروکربوری مانند نفتا، سوخت جت، دیزل و پایه های روغنی و ... تبدیل می شود.

    در این روش، گاز طبیعی نخست به گازهای سنتز منوکسید کربن و هیدروژن تبدیل می شود، سپس در یک رشته واکنش های شیمیایی تحت تاثیر بستر کاتالیستی محصولات هیدروکربوری مایع که در حال حاضر دارای بازار خوبی هستند، تولید می شوند. علاوه بر آن، فرآورده های مایع گاز را به آسانی می توان در بازار مصرف به فروش رساند، ولی به دلیل نوع خاص تقاضای ال.ان.جی که به تاسیسات دریافت خاصی نیازمند است، فروش ال.ان.جی همواره با دشواری بیشتری روبه رو است. به واسطه هزینه های بالا برای انتقال گاز طبیعی در هر یک از فناوری های گفته شده، تحقیق و پژوهش برای یافتن راهکارهای دیگر همواره ادامه دارد. اگر چه هنوز استفاده از فناوری GTL در جهان گسترش زیادی نیافته، سرمایه گذاری قابل توجه کشورهای صاحب منابع گاز همانند قطر، برای استفاده از این فناوری، نشانگر توسعه و سودآوری این فناوری در آینده ای نزدیک است.

    فناوری GTL با پیشینه بیش از 70 سال، در مقیاس تجاری هنوز در آغاز راه توسعه قرار دارد. فناوری تبدیل گاز به فرآورده های مایع گرچه برای بسیاری از توسعه دهندگان عمده این فناوری، مانند شل، ساسول، اکسون موبیل و سنترلیوم شناخته شده است، اما تعداد واحدهای بزرگ تجاری در جهان در این زمینه بسیار محدود و امروزه مقدار کمی از منابع مالی موسسه های بزرگ به این امر اختصاص یافته است.

    علاوه بر فناوری های ال.ان.جی و GTL، فناوری CNG و هیدرات نیز ممکن است بتوانند به عنوان راهکاری مناسب و ارزان برای انتقال گاز مطرح شوند. فناوری CNG ، برای انتقال گاز طبیعی در مسافت های طولانی، قابلیت مهمی به شمار می روند. CNG را می توان در کشتی های مخصوصی ذخیره، سپس به مقاصد مورد نظر حمل کرد.

    اگر چه یک کشتی حامل CNG نمی تواند گاز را به مقادیر بارگیری شده در کشتی های LNG انتقال دهد، ولی روش مایع سازی همچنین تبدیل مجدد به گاز در فناوری CNG آسان تر و بسیار کم هزینه تر از ال.ان.جی است. ذخیره سازی گاز در کشتی های CNG به صورت نگهداری گاز در لوله های با تحمل فشار 3000-1500 پی.اس.آی و به قطر 18 تا 36 اینچ است. این لوله ها که به صورت افقی و عمودی در کشتی تعبیه شده اند، توانایی ذخیره سازی مقادیر زیادی گاز را در خود دارند. برای کاهش خطرهای احتمالی، دمای این لوله‌ها در 20- درجه سانتی‌گراد حفظ می‌شود.

    به دلیل فشار بالای CNG در مخازن لوله‌ای شکل، بالابودن احتمال خطر انفجار، از مشکلات اساسی عملی‌نشدن کاربرد وسیع فناوری CNG در جهان است. امروزه استفاده از تکنیک های جدید در ساخت کشتی های CNG یعنی به کارگیری لوله هایی به قطر 6 اینچ که به صورت قرقره های بزرگ درون کشتی تعبیه می شوند، پیشنهاد شده است. این کشتی ها توانایی ذخیره سازی بیشتری از گاز را در خود دارند. فناوری CNG برای انتقال گاز مخازن آب های عمیق که انتقال گاز آنها با استفاده از خط لوله به ساحل با دشواری و هزینه بالا روبه رو است، می تواند کاربرد یابد.

    سادگی فرآیند تولید CNG و فناوری ساده تر ساخت کشتی های حمل آن نسبت به ال.ان.جی، طرح های CNG را به عنوان گزینه ای بالقوه برای انتقال گاز مطرح کرده است. با توجه به شرایط موجود فناوری CNG، استفاده از آن تنها برای انتقال گاز تا فواصل 2500 مایل مطمئن به نظر می رسد. تحقیقات در زمینه استفاده از فناوری CNG برای انتقال گاز طبیعی در کشورهای آمریکا و استرالیا همچنان ادامه دارد. فناوری CNG در صورت کاهش دادن خطر انفجار در هنگام انتقال آن، می تواند رقیبی برای فناوری LNG در فواصل کوتاه تر باشد. برای کشورهایی همانند کشور ما که دارای ذخایر عظیم گازی است، تحقیق و توسعه در زمینه طرح های GTL و CNG به عنوان راهکارهای جدید انتقال گاز، در تحقیق و پژوهش صنعت گاز می تواند به شمار رود. توسعه و توجه بیشتر به این فناوری ها و به ویژه فناوری GTL در کشور می تواند بازارهای صادراتی گاز را به همراه داشته باشد. یکی از عوامل موثر در میزان سرمایه گذاری در بخش GTL در ایران، وجود توانمندی های فنی و مهندسی بالقوه در صنایع نفت و گاز این کشور، به لحاظ مدیریتی و فنی است.

    در حدود دو سوم ماشین آلات و مخازن مورد کاربرد در یک واحد تولیدی GTL را در صنایع نفت و گاز ایران می توان یافت. از طرفی از لحاظ نیروی انسانی ماهر و متخصص، شرکت های مهندسان مشاور ایران تاکنون دو واحد تولیدی متانول و یک واحد تولیدی MTBE را بدون کمک شرکت های خارجی به پایان رسانده اند و یا در حال تکمیل آنها هستند. به همین دلیل، این اعتقاد که انجام مهندسی تفصیلی پروژه های GTL در ایران با قیمتی کمتر از نصف عرف جهانی امکان پذیر است، دور از ذهن نخواهد بود. در ضمن وجود نیروی انسانی آموزش دیده در ایران می تواند هزینه های عملیاتی یک واحد تولیدی GTL را به میزان قابل ملاحظه ای در قیاس با دیگر نقاط جهان کاهش دهد. وجود مخازن عظیم گازی یکی ازعوامل اساسی در اقتصادی بودن یک طرح GTL است.

    برای مثال میزان گاز مورد نیاز برای یک واحد تولیدی GTL به ظرفیت 70 هزار بشکه در روز و به مدت 25 سال حدود 5/5 تریلیون فوت مکعب است. منطقه ویژه اقتصادی پارس جنوبی در بندر عسلویه و میدان های، نار و کنگان در نزدیکی پارس جنوبی، یکی از مناسب ترین مراکز برای ساخت واحد تولیدی GTL است. ویژگی های فناوری GTL برای ایران در دهه اخیر، مخازن گازی متمرکز، عظیم و متعددی در آب های خلیج فارس و در مناطق جنوبی ایران کشف شده اند. بسیاری از این میدان ها، هنگام فعالیت های اکتشافی شرکت ملی نفت ایران و شرکت های بین المللی خارجی برای یافتن میدان های نفتی جدید به اثبات رسیده اند. هم اکنون احتمال اکتشاف های جدید دیگری از مخازن گازی متمرکز در نواحی خشک و در آب های دریای خزر و خلیج فارس، وجود دارد.

    بهره گیری از فناوری GTL برای تحرک بخشیدن به صادرات گاز و تولید محصولات سوختی با کیفیت بالا از جمله هدف هایی است که ایران نباید حتی یک لحظه از آن غافل باشد. واقع شدن این میدان های گازی نزدیک به آبراه ها و در فاصله کمی از خشکی یکی از عواملی است که پروژه های صادراتی گاز طبیعی را به شکل GTL و LNG اقتصادی می کند. یکی دیگر از ویژگی های اجرای پروژه های GTL در ایران این است که صرف نظر از سهم ایران در سازمان کشورهای صادرکننده(اوپک) می توان از مایعات میان تقطیری برای مصارف داخلی به جای نفت خام بهره برد؛ از این رو به همان میزان، نفت خام صادراتی و درآمد ملی افزایش می یابد. سهم تخصیصی از سوی اوپک بر اساس تولیدات کشورهای عضو اوپک تعیین می شود؛ از این رو اگر ایران بتواند تولیدات نفت خام خود را از این طریق افزایش دهد، سهم آن نیز بیشتر از میزان صادرات کنونی خواهد بود.

    از لحاظ مقدار، تولید هر بشکه محصولات فناوری GTL دو بشکه نفت خام برای صادرات را در پی دارد. بنابراین با توجه به روند روبه رشد مصرف آینده محصولات سوختی برای ایران، استفاده از GTL لازم و ضروری به نظر می رسد.

    » مراجع: CNG و LNG و GTL در انتقال گاز طبیعی، مصطفی ساغری
    بازار عرضه و تقاضای فرآورده های حاصل از تبدیل گاز به مایع در آسیا، علیرضا پیمان پاک
    » مطالب مرتبط:
    گاز طبيعي
    گاز طبيعي مايع (LNG)
    گاز مايع (LPG, Liquefied Petroleum GAS )
    بررسي فني- اقتصادي كاربرد فن آوري GTL براي ايران
    گاز طبيعي فشرده (CNG)
    ضرورت های استفاده از گاز CNG
    CNG مشكل ساز با راه حل

  8. #48
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    آسفالتين چيست؟ كلمات كليدي: آسفالتين ها، NSO، رزين ها، ساختمان

    آسفالتينها تركيبات پيچيده اي هستند . اين تركيبات به دليل اينكه ماهيت تركيبي آنها از يك مخزن به مخزن ديگر تغيير مي كند ، داراي وزن مولكولي معيني نمي باشند . از طرف ديگر مواد آسفالتيني به دليل دارا بودن ساختار حلقوي ، در حلالهاي آروماتيكي و حلقوي مانند تولوئن ، بنزن و غيره به خوبي حل مي شوند . اما در حلالهاي شيميايي نرمال آلكانها مانند نرمال هگزان يا نرمال هپتان حل نمي شوند . پس به منظور خارج كردن مواد آسفالتيني از فاز نفت خام ، آلكان اضافه مي كنيم .

    آسفالتينها اغلب به تركيبات NSO معروفند ، زيرا حاوي اتمهاي O ، S و N مي باشند كه بعضي از آنها جانشين كربن حلقه آروماتيكها مي شوند . تركيبات NSO بالاترين وزن مولكولي را دارند و سنگين ترين اجزاي تشكيل دهنده نفتهاي خام مي باشند . عموماً آسفالتينها همراه با نفت خامهاي آروماتيك سنگين يافت مي شوند . شكل زير مثالي از ساختمان يك رزين – آسفالتين را نشان مي دهد .


    مهندسی شيمی و نفت  2

    آسفاتينها در اصل داراي هيدروژن و كربن همراه با يك تا سه اتم از نيتروژن ، اكسيژن يا گوگرد در هر مولكول هستند . ساختمان اوليه آنها داراي حلقه هاي هيدروكربني آروماتيكي با سه تا ده و حتي بيشتر براي هر مولكول است . اتمهاي غير هيدروكربني احتمال دارد كه بخشي از حلقه هيدروكربني يا چسبيده به حلقه باشد .
    دوگانگي هاي چشمگيري ميان رزين ها و آسفالتين ها ديده مي شود . آسفالتينها در نفت حل نمي شوند بلكه به شكل كلوئيدي پخش مي شوند اما رزين ها به آساني در نفت حل مي شوند . آسفالتينهاي خالص به گونه جامد ، خشك ، پودرهاي سياه و غيره ، فرار هستند اما رزين هاي خالص به شكل مايعات سنگين يا جامدات چسبنده و به فراريت هيدروكربن ها با داشتن يك اندازه مولكولي يافت مي شوند . رزين ها با وزن مولكولي بالا ، قرمز رنگ هستند و رزين هاي سبك تر رنگ بسيار كمي دارند . از اينرو هنگامي كه به كمك تقطير ، نفت به بخشهاي جدا از هم تفكيك مي شود آسفالتينها در سنگين ترين بخش به نام پسمان مي مانند ولي رزين ها بر پايه فراريتشان در بخش هاي گوناگون پخش مي شوند . رنگ اين بخشها تا اندازه بالايي بستگي به بودن رزين ها دارد . رنگ پسمان به نسبت زيادي بستگي به بودن آسفالتينها دارد .

    يكي از مهمترين مسائلي كه به هنگام به كارگيري مراحل بازيافت نفت ايجاد مي شود ، مشكل رسوب آسفالتين مي باشد . آسفالتينها در نفت به وسيله رزين ها تحت شرايط مطلوب به صورت معلق نگاه داشته مي شوند . در واقع مي توان پديده تعليق و يا حلاليت ذرات آسفالتين در نفت خام را يك پديده ترموديناميكي تعادلي عنوان نمود و تغيير در هر عاملي كه اين تعادل را بر هم زند مي تواند حالت تعليق را از ميان برده و سبب بروز پديده تجمع ذرات آسفالتين به يكديگر و نهايتاً رسوب آنها شود . استخراج نفت بخصوص شيوه هاي به كار رفته در مراحل دوم و سوم بازيافت نفت اغلب باعث ايجاد برخي تغييرات در رفتار جريان ، خواص تعادلي فازها و خواص سنگ مخزن مي شوند كه اين تغييرات مي توانند تعادل ترموديناميكي را بر هم زنند و سبب تشكيل رسوب آسفالتين در سنگ مخزن شوند .
    آسفالتين تركيبي است آروماتيك با چند حلقه بنزني با وزن مولكولي بالا كه در نرمال هپتان ، نامحلول اما در تولوئن محلول مي باشد . پارامترهاي مؤثر در تشكيل رسوب آسفالتين شامل تركيب درصد يا غلظت ، دما ، فشار ، حلال تشكيل دهنده رسوب و مشخصه هاي هيدروديناميكي و پتانسيل جريان و ... مي باشد .

    بررسي و مطالعه مقالات مختلف در مورد مسائل مربوط به رسوب آسفالتين در ميادين نفتي بيانگر برخورد عمده با اين مسئله در بخشهاي عمليات بهره برداري از نفت و همينطور در روشهاي ازدياد برداشت از مخازن نفت و غالباً در تزريق هاي امتزاجي است .

    اين مجموعه به طور اجمالي به بررسي رسوبات آسفالتين در مخازن نفت مي پردازد .

  9. #49
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    كنترل رسوبات آسفالتين در چاههاي نفتي كلمات كليدي: آسفالتين ها، NSO، رزين ها، ساختمان

    2 – 1 – خلاصه
    رفع رسوبات آسفالتين در سازندهاي توليد كننده نفت و سيستمهاي توليدي طي سالها يكي از مشكلات اصلي در صنعت نفت بوده است . انتخاب عاملهاي كنترل كننده شيميايي در گذشته به بررسي انحلال توده اي آسفالتين در نمونه هاي بازيافت شده از سيستمهاي توليدي محدود شده بود . اخيراً روش مورد قبول براي حل اين مشكلات استفاده از حلالهاي آروماتيكي نظيرگزيلن ، تولوئن و غيره مي باشد . اين روش به استفاده از مقادير زياد اين حلالها نياز دارد . همچنين اين روش به تعداد دفعات زياد بايد انجام شود . اين مقاله نتايج آزمايشات بر روي ميدانهاي نفتي و كاربرد مواد شيميايي كنترل كننده آسفالتين و استفاده از تستهاي آزمايشگاهي براي از بين بردن رسوبات آسفالتين و استفاده از مواد شيميايي بازدارنده رسوبات آسفالتين را شرح مي دهد .

    آزمايشات اوليه قدرت پراكنده سازي ، با آزمايش پخش كردن آسفالتين در هگزان آغاز شده است . برخي مواد شيميايي كه نتايج اميدوار كننده اي در انحلال و پراش آسفالتينها در محيطهاي نامحلول حاوي هگزان ارائه كرده اند ، براي استفاده در ميدانهاي نفتي يا براي تست اضافي در آزمايش رفع رسوبات جاري سنگ انتخاب شده اند .

    دستگاه آزمايش جريان درون نمونه ( core flow test apparatus ) روشي را براي آشنا شدن با تشكيل رسوب آسفالتين و مطالعه در رابطه با رفع آن با استفاده از عاملهاي شيميايي ارائه كرده است . استفاده از نمونه هاي سنگ و آسفالتينهاي بدست آمده از منابع توليدي ، اين فرصت را به ما مي دهد كه بهترين مواد شيميايي رفع كننده رسوبات آسفالتين را انتخاب كنيم .

    2 – 2 – مقدمه
    آسفالتينها تركيبات پيچيده ناجور اتم و درشت حلقه اي شامل كربن ، هيدروژن ، سولفور و اكسيژن هستند . آنها در طبيعت به صورت درشت بوده و به شدت آروماتيكي هستند و در نفتهاي خام به صورت مايسلهاي به هم چسبيده يافت مي شوند . رزينها و مالتينها كه پيشنيازهاي مولكولي آسفالتينها هستند ، ذرات آسفالتين منتشر شده را به هم مي چسبانند . در حالي كه آسفالتينها توسط سرهاي قطبي مالتينها و رزينها احاطه شده اند ، دنباله هاي آليفاتيكي آنها بطور فزاينده اي در فازهاي نفت هيدروكربنها در حال افزايش است . وقتي نيروهاي شيميايي يا مكانيكي به اندازه كافي بزرگ شوند ، اين گونه هاي به هم چسبيده و محكم شكسته مي شوند و ذرات آسفالتين براي واكنش با آسفالتين ناپايدار اصلي و تشكيل توده هاي بزرگ و نهايتاً ته نشيني آماده مي شوند .

    اين عاملهاي ناپايدار داراي يك پتانسيل جرياني هستند كه اين پتانسيل جرياني باعث جريان سيال در محيطهاي متخلخل سازند مي شوند . اين توده هاي آسفالتين توسط پتانسيلهاي الكتريكي ، عاملهاي مكانيكي و يا توسط عاملهاي خارجي ديگر بوجود آمده اند كه اين عاملها مي توانند اسيد يا ديگر محركها يا سيالهاي سخت يا گازهايي كه براي كمك كردن به بازيافت استفاده مي شوند مانند co2 و ديگر گازهاي امتزاجي باشند . اين مواد با تغيير PH يا ديگر مشخصات نفت خام مي توانند آسفالتينها را ناپايدار كنند .

    چون ذرات آسفالتينها قطبي هستند ، ممكن است اين ذرات در اثر خاصيتهاي القايي در توده هاي ثانويه ، باردار شوند . همانطور كه تجمع ادامه پيدا كرد ، توده هاي ذرات درشت آسفالتين پيدا خواهند شد . تأثيرات نقطه حباب مهم است ، زيرا اين تأثيرات مكانيسم دفع مواد شيميايي از توده هاي ناپايدار توده با سرهاي آليفاتيكي رزينها و مالتينها باعث مي شود كه يك بي تعادلي لحظه اي در ماهيت محيط اطراف ايجاد شود . اين عدم تعادل لحظه اي براي دفع رزينها و مالتينها و ايجاد ناپايداري كافي مي باشد . فرايندهاي مكانيكي با چندمين راه حل اين كار را آسان نموده اند ، اما مهمترين اين راه حلها جابجايي اوليه از يك نقطه با فشار مشخص به يك نقطه با فشار كمتر مي باشد . جريانهاي امتزاجي با ايجاد غلظت بيشتر سرهاي ناپايدار توده آسفالتين ، مشكل را شدت مي بخشند .

    2 – 3 – تستهاي آزمايشگاهي
    تستهاي آزمايشگاهي ارائه شده براي آشكار كردن طرز عمل مؤثر مواد شيميايي و انتخاب اين مواد جهت استعمال در ميدانهاي نفتي ، شامل سه گونه تست مي باشند . براي انتخاب مواد شيميايي اي كه در درجه اول براي پراكندگي و پخش آسفالتين كاربرد دارند ، از نوع تست انتخاب مواد شيميايي پراكنده ساز استفاده مي شود . هدف اين آزمايش تهيه يك محلول خام اوليه حاوي 5 گرم رسوب حل شده در 100 ميليليتر گزيلن مي باشد . سپس 100 ميليليتر هگزان را در تعدادي استوانه مدرج 100 ميليليتري ريخته و مقاديري مشخص از مواد شيميايي پخش كننده را در هر استوانه اضافه مي كنيم . يك ميليليتر از محلول خام شامل آسفالتين را به هر كدام از استوانه ها اضافه كرده و محتوي آنها را خوب به هم مي زنيم . بعد از مدت يك ساعت ، يك نمونه ده ميليليتري از سطح 70 ميليليتري برداشته و با 30 ميليليتر گزيلن مخلوط مي كنيم . مقدار نفوذ اين مواد شيميايي تا 640 نانومتر محاسبه شده و با نتايج عملكرد ديگر مواد شيميايي با كمترين مقدار نفوذ براي معلق كردن هرچه بيشتر آسفالتينها در گزيلن مطلوب است .

    بيشتر نسخه هاي آزمايش پراكنده سازي توده هاي آسفالتين مي تواند براي انتخاب حلالها و عاملهاي پراكندگي اين توده ها مورد استفاده قرار گيرد . در اين تست ، يك قرص از رسوب آسفالتين با قرار دادن 2 گرم آسفالتين تحت فشار pellet press و شكل گيري قرص در فشار بالا ، تشكيل مي شود .

    در ساخت اين قرص تفاوتهاي سطح و شكافها در نظر گرفته نمي شود كه ممكن است اين تفاوتها در قسمتهايي از رسوب آسفالتين مورد استفاده براي آزمايش ، خود را نشان دهند . اين فاكتورها ممكن است نتايج اين آزمايش را تحت تأثر قرار دهند . 100 ميليليتر هگزان را همراه مواد شيميايي درخواست شده در يك استوانه 100 ميليليتري رخته و خوب مخلوط مي كنيم . قرص آسفالتين ساخته شده را در استوانه قرار داده و اجازه داده مي شود تا محتوي استوانه براي يك دوره زماني راكد باشد . مقدار آسفالتينهاي پخش شده در هگزان كه به صورت يك قسمت تيره پيداست از روي استوانه مدرج خوانده مي شود . مواد شيميايي كه بيشترين مقدار آسفالتينهاي پخش شده را در كوتاهترين زمان تهيه كرده اند ، انتخاب مي شوند . اين آزمايش به انتخاب يك سري مواد شيميايي كمك مي كنند كه اين مواد مي توانند رسوبات آسفالتين را تحت تأثير قرار داده و باعث پخش شدن آنها شوند . اين آزمايش مي تواند براي انتخاب يك سري مواد شيميايي براي آزمايش core flow test نيز استفاده شود .

    Core flow test براي انتخاب مناسبترين مواد شيميايي بدست آمده براي رفع رسوبات آسفالتين از مواد اوليه سازند و كمك به احياي تراوايي نسبي استفاده مي شود . اين دستگاه شامل يك Hastler core holder ، پمپ گرادياني كروماتوگرافي مايعات فشار بالا ، طيف سنج فوتوالكتريكي بدون توقف جريان ، ترانس ديوسر فشار و يك سيستم كامپيوتري جهت ثبت داده ها مي باشد . براي آزمايشهاي مغزه از مغزه field يا مغزه استاندارد Berea استفاده مي شود . امروزه آزمايشهاي مغزه در دماي اتاق انجام مي شود . بعد از استقرار شرايط water wet و تعيين تراوايي مؤثر يك مغزه آسيب نديده و استفاده از گزيلن به عنوان يك حلال شوينده يا يك فاز پيوسته ، آسيب به مغزه با قرار دادن 75 ميليليتر فاز پيوسته گزيلن به درون مغزه ، ايجاد مي شود كه اين فاز پيوسته داراي يك درصد پراكندگي آسفالتين مي باشد .

    پراكندگي آسفالتين با خرد كردن رسوبات آسفالتين و اضافه كردن آنها به گزيلن ايجاد مي شود . اگر هيچ رسوبي موجود نباشد نتيجه مي گيريم كه آسفالتين توسط هگزان در نمونه نفت خام ميدان نفتي ته نشين شده است . وقتي ديسپرسيون گزيلن / آسفالتين كاملاً مغزه را پر كرد ، حلال حامل گزيلن سراسر حجم چندمين مغزه را فرا خواهد گرفت تا بدين وسيله يك حد مبنا براي حذف گزيلن از رسوبات آسفالتين پيدا شود . از آنجايي كه تعدادي از آسفالتينها تحت شرايط اين آزمايش در گزيلن حل نمي شوند ، اين حد مبنا بهترين حالتي كه گزيلن مي تواند رفع شود را براي آسفالتينهاي مورد بررسي نشان مي دهد و اين حد مبنا به عنوان نقطه رفع مطلق گزيلن مشخص مي شود . بنابراين نتيجه مواد شيميايي انتخاب شده براي مقادير مختلف عملي مي باشد .

    معمولاً در ابتدا يك pore volume براي تزريق تحت فشار در اين راه كارهاي شبيه سازي شده ، استفاده شده است . نتيجه اين آزمايشات مي تواند در شستشوي تحت فشار گزيلن به كار برده شود ، براي اينكه تأثير مواد شيميايي در رفع رسوبات داخل يك جريان نفتي مشخص شود . جريان داخل يك مغزه ممكن است به علت استفاده از راهكارهايي كه در آنها مواد شيميايي استفاده مي شود ، معكوس شود . اين معكوس شدن جريان درون مغزه از سمت تخليه شده مغزه مي باشد . خواسته شده كه تزريق تحت فشار به كار رفته در يك چاه در طي يك ترتمان منطقه اي شبيه سازي شود . اگر درخواست شود كه مغزه دوباره اشباع و جريان گزيلن دوباره از آن عبور داده شود ، يك مغزه مي تواند براي چندين ساعت مورد بررسي و معالجه قرار گيرد .

    فشار و نرخ جريان در يك مغزه اندازه گيري شده و در سيستم جمع آورنده داده ها ، ذخيره شده است . عبور سيال خروجي از مغزه به ميزان 430 نانومتر توسط دستگاه طيف سنج فوتو الكتريكي بدون توقف جريان اندازه گيري شده است . با رسم ميزان عبور سيال خروجي از مغزه بر حسب غلظت تعيين شده با رقيق شدگي استاندارد آسفالتين در ديسپرسيون گزيلن براي داده هاي قرائت شده از سيال خروجي و مقايسه آنها با قانون بير ، ميزان آسفالتينهايي كه رسوب شده اند ، رفع شده اند و در نمونه باقي مانده اند مشخص مي شود .

    توده آسفالتين بعد از هربار راندن رسوبات ، دوباره وارد مغزه مي شود . جريان گزيلن دوباره مستقر مي شود و تأثير ديگر مواد شيميايي بر روي مغزه بررسي مي شود .
    تراوايي مؤثر با اندازه گيريهاي جريان و فشار بدست آمده توسط اين تست ، محاسبه مي گردد . وقتي كه تراوايي مؤثر نسبت به ميزان رسوبات آسفالتين جدا شده رسم شود ، بهترين ماده شيميايي براي درمان مخازن بدست مي آيد . براي نمونه نمودار رسم شده در شكل 2 ، تراوايي اوليه بر اثر استفاده از گزيلن را ارائه مي دهد . تراوايي به خاطر رسوبات آسفالتين نمونه ، كاهش مي يابد و بهترين تراوايي بدست آمده تنها از بيرون راندن گزيلن و ميزان جداسازي و رفع آسفالتين و اصلاح نتايج تراوايي بوسيله هر ماده شيميايي تست شده ، ارائه مي گردد .

    در بسياري از معالجات ( رفع رسوبات آسفالتين ) ، افزودن يك حلال متقابل تا حدود زيادي تراوايي نسبي را بهبود خواهد بخشيد . هر چند ، افزايش ظرفيت حلال متقابل در خيلي موارد مي تواند ميزان جداسازي آسفالتين را كاهش دهد . حلال متقابل در اثر تماس مؤثر با رسوبات ، مي تواند سبب water wetting ذرات آسفالتين شود ، ذرات آسفالتيني كه در حلال قابل حل نفت ، مشكل زا مي باشند .

    گزيلن استفاده شده در core flow test به عنوان يك فاز حامل پيوسته ، برخي از رسوبات آسفالتيني خود را رفع كرده است . براي انجام آزمايشهاي سخت در خلال آزمايش مواد شيميايي ، هگزان مي تواند به عنوان يك فاز حامل استفاده شود . هگزان هيچ رسوبي را رفع نخواهد كرد ، و سبب خواهد شد كه رسوبات به صورت ته نشين شده باقي بمانند . نتايج آزمايش نشان مي دهد كه مواد شيميايي انتخاب شده رفع رسوبات آسفالتين را كند خواهد كرد و تراوايي نسبي افزايش مي يابد ، حتي وقتي هگزان به عنوان سيال حامل استفاده شده است .

    2 – 4 – روشهاي به كار رفته در ميدان نفتي براي رفع آسفالتينها
    وقتي توليد چاه در اثر رسوبات آسفالتين كاهش مي يابد ، رايجترين كار اجراي يك درمان با پاكسازي آسفالتينها با استفاده از يك حلال داراي ظرفيت آروماتيكي بالا مي باشد . براي نتيجه بخش بودن كار ، حلال مورد استفاده بايد قادر باشد كه آسفالتين را در خود حل كرده و آنها را درسراسر محلول سيستم توليدي نگه دارد . اگر آسفالتينها در محلول نگه داشته نشوند ، آنگاه رسوب كردن در هر جايي كه فاكتورهاي ضعيف كننده آزمايش شده اند ، ممكن است اتفاق بيفتد .

    هرگاه رسوب آسفالتين اتفاق مي افتد ، در ترمهاي زمان تكميل كار ، توليد به تأخير افتاده و جايگزيني پمپها ، ممكن است خيلي زيان وارد شود ، به همان ميزان نيز رفع علاج بخش آسفالتين و يا درمان توسط شبيه سازي پرهزينه مي باشد . بنابراين حداكثر استفاده از برنامه درمان با مواد شيميايي ، براي كاهش تكرار كارها در هر چاه مشكل دار ، مهم است .

    انتخاب مواد شيميايي درماني مناسب به محل اتفاق افتادن مشكل ، علت به وجود آمدن مشكل و اينكه اين مواد چه كاربردي داشته باشند ، بستگي دارد . اضافه بر آن ، تستهاي آزمايشگاهي مورد استفاده براي دستيابي به انتخاب مواد شيميايي مطلوب ، به ميزان مشكل موجود و روال استعمال مواد شيميايي ترجيح داده شده بستگي خواهد داشت . براي نمونه روش كاربردي در ميدان شامل تميزسازي چاه و سازند ، تحت فشار قراردادن سازند ، يا تزريق پيوسته براي جلوگيري يا به تأخير انداختن بيشتر رسوب گذاري ، مي باشد .

    نتايج مواد شيميايي انتخاب شده در درمان ميدان نفتي در مناطقي كه مشكلات رسوبات آسفالتين سبب مشكلاتي در عمليات بهره برداري شده است ، كاربردي تر نشان داده شده است . اين موضوع مخصوصاً مهم است كه توليد در عمليات بهره برداري به صورت يك جريان امتزاجي يا وارد شدن فاكتورهاي ناپايداري آسفالتين كاهش يافته بود . رسوبات آسفالتين در جريانهاي امتزاجي كه توسط پمپهاي الكتريكي فرو رونده بوجود آمده اند ، يك محل سخت ويژه اي را در نتيجه ناپايداري بوسيله حلالهاي تغيير يافته ، يك برش مكانيكي حداكثر ، و افت فشار در پمپ را باعث مي شوند . كاربرد نتايج بحث شده در اينجا ، در انواع عمليتهاي بهره برداري موفقيت آميز بوده است .


    2 – 5 – معالجات انجام شده براي چند ميدان مشكل دار
    2 – 5 – 1 – نمونه 1 )
    يك چاه جرياني در منطقه جنوب شرقي مكزيك در عمق 19600 فوتي ، به اين مشكل ( رسوبات آسفالتين ) دچار شده بود . و اين چاه در عمق 19029 فوتي تكميل شده بود . دماي ته چاه اين چاه در حالت بسته بود . مشخص شده بود كه رسوبات آسفالتين در لوله ها به خاطر كمتر شدن توليد ، مشكل زا بود . معالجات اوليه در درجه اول شامل استفاده از گزيلن و ديگر افزودني ها بود . معالجات در دوره هاي زماني مختلف انجام گرفته و معمولاً شش ماه طول كشيده است . وقتي كه معالجات شروع شد ، چاه با دبي 436 بشكه نفت در روز توليد مي كرد ولي بعد از چند بار معالجه ، توليد چاه به 4700 بشكه نفت در روز رسيد .

    مطالعات درباره عامل پخش كننده و تست core flow در آزمايشگاهي كه نمونه هاي نفت خام و رسوبات درون لوله ها را مورد استفاده قرار مي دهد ، نشان مي دهد كه استفاده از ماده شيميايي شماره 1 ( product ) رسوبات آسفالتين را از درون لوله ها حذف مي كند و ماده شيميايي شماره 3 ( product 3 ) آسيب سازند را برطرف نموده و تراوايي را به حالت اول بر مي گرداند .

    آسفالتينهاي درون لوله ها پاكسازي شد . با رفع همه آسيبها ، سازند معالجه د و كارهايي صورت گرفت تا رسوب گذاري در آينده كاهش پيدا كند . با انجام اين كارها معالجه چاه موفقيت آميز بود . لوله هاي مارپيچ شده كه براي اضافه كردن ديزل براي سوخت چاه استفاده مي شود ، تا محل شعله كشيده شده است . وقتي لوله هاي مارپيچ شده به محدوده آسفالتينها در 15748 فوتي رسيدند ، مخلوطي شامل 90 درصد گزيلن و 10 درصد ماده شيميايي ( حدود 275 بشكه ) شماره 1 توسط يك سوخت پاش فشار بالا به سمت انتهاي لوله هاي مارپيچ ، پمپ مي شود .

    با رفع رسوبات آسفالتين درون لوله ها با يك بار گذشتن مخلوط از درون اين لوله ها ، معالجه موفقيت آميز خواهد بود . بعد از محدوده لوله هاي مارپيچ كه از رسوبات آسفالتين رفع شده اند ، سازند با استفاده از لوله هاي مارپيچ ، تحت فشار 1100 بشكه از يك سيال متقابل كه به دنبال آن 1100 بشكه از ماده شيميايي شماره 3 ( product 3 ) كه به صورت مخلوط 10 درصد در گزيلن قرار دارد ، معالجه مي گردد . نيتروژن براي تحت فشار قرار دادن سيالات درون سازند براي يك فاصله شعاعي 8 فوتي از دهانه چاه مورد استفاده قرار مي گيرد . در اين حالت چاه بسته خواهد بود و براي نفوذ حلالهاي تزريقي به مدت چهار ساعت فرصت داده مي شود .

    بعد از چهار ساعت ، چاه دوباره شروع به توليد خواهد كرد و دبي توليدي اينبار به 4800 بشكه نفت در روز رسيد . بررسي هاي دوره اي روي 21 ماه آينده نشان داده است كه توليد به تدريج به 3500 بشكه نفت در روز افت خواهد كرد .

    چاه دوم در منطقه اي مشابه در جنوب شرقي مكزيك ، با عمق 17000 فوت و منطقه بهره برداري 50 فوتي ، در فاصله زماني مشخصي توسط آسفالتينها بر روي ستونك سر چاه كاملاً بسته شده بود . استفاده از عاملهاي پخش كننده و core flow test در تستهاي آزمايشگاهي نشان مي دهد كه مواد شيميايي مشابه استفاده شده براي چاه قبلي مي تواند براي رفع مشكل اين چاه نيز استفاده شود . از آنجايي كه لوله ها كاملاً بسته شده بودند ، لوله هاي مارپيچ شده نمي توانست براي معالجه چاه مورد استفاده قرار گيرد . يك كاميون نفت داغ به چاه متصل مي باشد و مخلوط گزيلن و 10 درصد ماده شيميايي شماره 1 ( product 1 ) به صورتي مواج از بالاي ستونك سر چاه به داخل فرستاده مي شود . بعد از چندين ساعت آسفالتينها تا عمق 11500 فوتي رفع شدند و معالجه چاه با نفوذ اين مواد به داخل براي مدت 24 ساعت ادامه داشت .

    چاه دوباره شروع به توليد كرد و توليد نفت از صفر به 3400 بشكه در روز رسيد . توليد اين چاه پس از 21 ماه به 2900 بشكه در روز كاهش يافته بود .
    چاه سوم در منطقه اي مشابه در جنوب شرقي مكزيك با عمق مشابه چاه دوم ، مورد بحث مي باشد . در اين مورد نيز رسوبات آسفالتين در محدوده لوله ها باعث شده بود كه توليد از 2600 بشكه در روز به 280 بشكه در روز برسد . تستهاي آزمايشگاهي بر روي رسوبات بدست آمده از اين چاه نشان داد كه معالجه اي شبيه آنچه در چاه قبلي انجام شد مي تواند در اين مورد نيز مؤثر واقع شود . به همان صورتي كه براي چاه اول جهت رفع رسوبات از لوله ها و برگشت تراوايي به حالت اوليه شرح داده شد ، اين چاه نيز معالجه شد .

    بعد از معالجه ، توليد اين چاه به 1400 بشكه در روز رسيد ، اين نرخ بعد از يك سال توليد متناوب نهايتاً به 1300 بشكه در روز رسيد .

    2 – 5 – 2 – نمونه 2 )
    چاهي در لويي زياناي جنوبي نشان داد كه كاهشي سريع در توليد از 406 بشكه نفت در روز به 53 بشكه نفت در روز ، مشاهده مي شود . معالجات با گزيلن توليد را دوباره براي يك دوره زماني كوتاه به 101 بشكه در روز رساند ، با توجه به اينكه اين نرخ به صورت پيوسته به 66 بشكه در روز كاهش يافت . تست آزمايشگاهي اي كه در آن از آزمايش عامل پخش كننده استفاده شده است نشان داده است كه ماده شيميايي شماره 2 ( product 2 ) مي تواند معالجه مناسبي را ارائه دهد . معالجه با استفاده از 440 گالن از ماده شيميايي شماره 2 ( product 2 ) همراه 440 گالن از يك حلال متقابل بر روي چاه صورت گرفت . لوله هاي مارپيچ شده واحد نيز ، براي اين مورد استفاده قرار گرفت كه معالجه در محل مورد نظر در بالاي perforation صورت گيرد و نيتروژن مورد نياز نيز جابجا شود . چاه در شب قبل بسته شده بود . توليد اوليه پس از اينكه چاه دوباره باز شده بود به 152 بشكه در روز افزايش يافت . نرخ توليد چاه در 91 بشكه نفت در روز براي پنج ماه ثابت ماند .

    2 – 5 – 3 – نمونه 3 )
    جريان CO2 در Permian Basin area نتيجه مسدود شدن پارافين و آسفالتين در محدوده نزديك چاه و لوله هاي چاههاي جرياني مي باشد . رسوب از چاهها شامل مقدار تقريباً برابري از هر دو مورد پارافين و آسفالتين مي باشد . معالجات سنتي كه در آن از نفت داغ ، اسيد يا آب داغ استفاده مي شود نيز براي بعضي مواقع به كار برده مي شود . تأثير اين گونه معالجات كمتر شده است به گونه اي كه منجر به نرخهاي توليد خاصي ، درست 6 بشكه در روز مي شد . آزمايشات انجام شده ماده شيميايي شماره 3 ( product 3 ) را براي استفاده مناسب دانست .

    بدنبال اين معالجات توليد چاه به نرخ توليد قبل از رسوب ، در حدود 83 بشكه در روز برگشت . اين معالجه براي حدود شش هفته ، به صورت مداوم ادامه داشت . هزينه معالجه شيميايي كمتر از 7000 $ بود ، مقايسه شود با هزينه معالجه اسيدي كه 20000 $ هزينه در برداشت . با توجه به اينكه اين 7000 $ در كمتر از يك هفته برگشت داده مي شود .

    2 – 6 – نتايج
    استفاده از تست هاي آزمايشگاهي طراحي شده خاص ، براي انتخاب معالجات رفع آسفالتين مي تواند هزينه محلولهاي مؤثر براي كنترل مسائل ناشي از حضور آسفالتين كه سر راه توليد قرار دارند را پيش بيني كند . اين محلولها شامل مواد شيميايي انتخاب شده مناسب هستند و كاربرد مواد شيميايي انتخاب شده به صورتي شايسته طراحي شده است .

  10. #50
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031
    سپاس ها
    311
    سپاس شده 1,281 در 886 پست

    پیش فرض

    فصل اول : معرفي آسفالتين به عنوان يك رسوب هيدروكربني كلمات كليدي: آسفالتين ها، NSO، رزين ها، ساختمان

    1 – 1 – آسفالتين
    به طور كلي آسفالتين به جامدات رسوب كرده حاصل از افزودن هيدروكربنهاي سبك نظير نرمال پنتان و نرمال هپتان به نفت اطلاق مي شود . به عبارت ديگر آسفالتين يك مولكول پيچيده و غير قابل حل در نرمال آلكانهاي سبك و قابل حل در بنزن مي باشد و مي تواند از نفت يا زغال سنگ مشتق شود . رزين به عنوان كسر نامحلول در پروپان و محلول در نرمال هپتان معرفي شده است كه به مخلوط آن با آسفالتين ، آسفالت گفته مي شود . مشخص شده كه عناصر تشكيل دهنده رسوب آسفالتين به توجه به عامل رسوب دهنده و مخزن نفت متغير است . نسبت H/C بين 1.05 – 1.15 درصد و مقدار اكسيژن بين 0.3 – 4.9 درصد و مقدار نيتروژن بين 0.6 – 3.3 درصد و مقدار گوگرد بين 0.3 – 10.3 درصد تغيير مي كند .

    آسفالتين معمولاً به عنوان سنگين ترين و قطبي ترين تركيب نفت معرفي مي شود . آسفالتين داراي مولكولي آماروف است كه ذوب نمي شود و در دماي بالاتر از 300 – 400 درجه سانتيگراد تجزيه مي شود ، به طوري كه هيچ نقطه ذوبي مشاهده نمي شود . نتايج تحقيقات برخي از محققين نشان داده كه آسفالتين نتيجه اكسيداسيون رزين مي باشد كه خود آنها از اكسيداسيون آروماتيك هاي سنگين بدست آمده اند . هيدروژناسيون رزين و آسفالتين منجر به توليد هيدروكربنهاي سنگين مي شود . به طور كلي دو نوع رسوب آسفالتين در ميادين نفتي گزارش شده است . رسوب جامد سخت و درخشنده كه احتمالاً ناشي از تجمع آسفاليتن روي سطح محلول مي باشد و لجنهاي تيره كه به خاطر تشكيل مقادير بزرگ آسفالتين در داخل محلول مي باشد . در حقيقت محيطي كه آسفالتين در آن رسوب مي كند مستقيماً بر طبيعت آسفالتين تأثير مي گذارد . به طوري كه در نسبتهاي بالا از رسوب دهنده ، رسوب آسفالتين كريستالي تر بوده و تمايل به تجمع ناگهاني دارد . همچنين هر چه عدد كربني اين رسوب دهنده كوچكتر باشد ، رسوب كريستالي تر است . موقعي كه آسفالتين توسط تزريق عوامل رسوب دهنده از نفت جدا مي شود رنگ قهوه اي تيره دارد . پس از جدا كردن اجزاي سبكتر ، آسفالتينها رنگ سياه تيره به خود مي گيرند كه شدت آن به غلظت آسفالتين بستگي دارد .

    مهمترين سؤال اذهان اغلب محققين در اين زمينه اين است كه حالت حقيقي آسفالتين در مخزن اصلي آن چيست ؟ به عبارت ديگر حالت وجودي آسفالتين قبل از هر گونه اقدام براي جداسازي آن چگونه است ؟ لذا پيشگويي ماهيت آسفالتين در مخزن همواره مودر توجه بوده است . عليرغم تلاشهاي فراوان انجام شده در 60 سال اخير ، اختلاف نظر قابل ملاحظه اي در مورد ساختار و طبيعت آسفالتين در تعادل با نفت ، وجود دارد . توسعه مدلهاي ترموديناميكي ، حلالهاي آسفالتين ، متوقف كننده هاي تشكيل رسوب آن و به طور كلي يافتن راهكارهاي مناسب براي رفع مشكل تشكيل رسوب آسفالتين در مخازن نفتي مستلزم دانش كافي و دقيق از ماهيت حقيقي آن مي باشد كه هنوز نياز به تحقيق و مطالعه بيشتر در اين خصوص احساس مي شود .

    تلاشهاي فراواني براي مشخص نمودن ساختمان شيميايي آسفالتين و توسعه يك شكل ساختماني انجام گرفته است . تعيين اندازه هاي ذرات يا مولكولهاي آسفالتين همواره مورد مطالعه محققين بوده است و اثر عوامل مختلف بر آن مورد توجه و اهميت قرار گرفته است . كاربرد روشهاي دستگاهي sasx , esr , nmr , sans ftir ، روشهاي تخريب حرارتي و هيدروليز و اكسيداسيون آسفالتين نشان داده است كه آسفالتين از حلقه هاي آروماتيك و بنزن تشكيل شده است كه زنجيره جانبي متصل به آن هستند . اين آروماتيك هاي كوچك با پيوندهاي پلي متين همراه با اتمهاي گوگرد فراوان به يكديگر متصل هستند . بر اين اساس اشكال ساختماني متفاوت براي آسفالتينها ارائه شده است . اما استفاده از مكانيك مولكولي كه از توابع تحليلي براي كشش پيوند استفاده مي كند و انرژي ساختماني را به حداقل مي رساند ، پس از انجام چهارهزار مرحله مختلف ، ساختمان مولكولي اي را تأييد كرد كه به صورت سه بعدي نشان داده مي شود . بدين ترتيب نشان داده شد كه بر خلاف نظرات قبل آسفالتين يك مولكول سه بعدي است . وقتي مولكول ساده است ، چند پارامتر براي توصيف شكل هندسي آن كافي است . اما اگر مولكول بزرگ و پيچيده باشد نظير آسفالتين ، چون قطبيت در تمام سطح توزيع مي شود ، نمي توان اينگونه عمل كرد .

    به هر حال وجود پلي آروماتيك ها در ساختمان مولكولي آسفالتين توسط بسياري از محققين تأييد شده است .

    مطالعات انجام شده روي اندازه ذرات يا مولكولهاي آسفالتين نشان داده است كه عوامل بسياري در اندازه ذرات يا توزيع آنها مؤثرند . ملاحظه شده است كه افزايش جرم مولكولي حلال ، باعث كوچكتر شدن اندازه متوسط ذرات شده است . مطالعات درباره نسبت رسوب دهنده نشان داده است كه اندازه متوسط ذرات براي نسبتهاي كوچك رسوب دهنده بزرگتر است . در حقيقت ثابت دي الكتريك رسوب دهنده كه بيانگر توانايي آن براي شكستن نيروهاي جاذبه قطبي بين ذرات آسفالتين است ، نقش مهمي دارد . به طوري كه بزرگتر شدن اين ثابت مي تواند منجر به حل كردن كامل آسفالتين شود . طول زنجير پارافيني نيز توزيع اندازه ذرات را كنترل مي كند . افزايش دما با كاهش قدرت حلاليت نفت ، بر رسوب آسفاليت اثر مي گذارد. بنابراين مولكولهاي بزرگتر زودتر رسوب مي كنند . نتايج ، نشان داده كه اندازه ذرات آسفالتين از يك توزيع نرمال لگاريتمي پيروي مي كند . تغييرا دما بين صفر تا 100 درجه سانتيگراد ، اثر قابل توجهي را نشان مي دهد . افزايش فشار موجب افزايش اندازه ذرات آسفالتين مي شود . بطور كلي اندازه متوسط آن بين 266 تا 495 ميكرون محاسبه شده است .

    گروهي از محققين با كاربرد روش SANS براي ساختمان مولكولي آسفالتين و براي حلاليت آن در تولوئن نشان دادند كه اندازه ذرات از تابع توزيع SCHULTZ پيروي مي كند و افزايش دما موجب تجزيه شدن ذرات بزرگتر مي شود . بطوري كه اندازه متوسط اين ذرات تقريباً مستقل از دما است . در اين شرايط تابع توزيع SCHULTZ به تابع توزيع GAUSSLAN تبديل مي شود . آزمايشات هدايت الكتريكي نيز اين تابع توزيع را تأييد كرده است به طوري كه عدم وجود مكانهاي باردار در سطح آسفالتين باعث عدم دستيابي به اجزاي ديگر نفت شده است .

    تلاش زيادي براي يافتن وزن مولكولي آسفالتين انجام گرفته و روشهاي متفاوت نظير VPU , SEC , GPC , HPLC براي انجام محاسبات به كار رفته اند اما وجود آروماتيك هاي متراكم باعث به وجود آمدن تمايل شديد آسفالتين به جذب سطحي روي ژل مي گردد كه باعث مي شود روشهاي GPC نامعتبر شود . از سويي فراريت بسيار كم آن باعث ضعف روشهاي اسپكتروسكوپي – جرمي مي شود . در حقيقت VPO بهترين و مناسب ترين روش براي برآورد جرم مولكولي آسفالتين است .

    1 – 2 – ماهيت آسفالتين در نفت
    همانطور كه از شكل زير پيداست ، آسفالتينها جايگاه ويژه اي را در نفت خام اشغال كرده اند .

    مهندسی شيمی و نفت  2

    مشخص نمودن ماهيت آسفالتين در نفت ، هدف مطالعات بسياري از محققين در چند دهه ي اخير بوده است . گروهي از محققين معتقدند كه آسفالتين به صورت يك ساختار كلوئيدي در نفت وجود دارد كه توسط عوامل پايدار كننده به صورت معلق در آمده است . افزودن حلال باعث جدا شدن اين عوامل از سطح آسفالتين و در نتيجه بر هم خوردن اين پايداري مي گردد . اين عوامل همان رزينها هستند كه به صورت تركيبات قطبي با وزن مولكولي بين 250 تا 1000 گرم بر مول مي باشند . اين حالت آسفالتين توسط روشهاي ميكروسكوپي تأييد شده است كه در آن آسفالتين همراه با مولكولهاي بزرگ زرين ، مايسلهايي را تشكيل مي دهد كه در نفت به صورت معلق و پراكنده در مي آيد .

    دسته ديگر از مطالعات بر اساس تشكيل مايسلهاي آسفالتين در نفت و انجام واكنشهاي پليمريزاسيون به هنگام تشكيل رسوب انجام شده است .
    آزمايشات تجربي فراواني براي مشخص نمودن غلظت بحراني مايسلها انجام گرفته است كه عمدتاً براي مخلوط آسفالتين و حلالهايي نظير تولوئن بوده است . از روشهاي اندازه گيري كشش سطحي براي تأييد اين وضعيت آسفالتين استفاده شده است .

    بسياري از محققين هم معتقدند كه آسفالتين به صورت مولكولي در نفت حل مي شود كه مي تواند داراي ساختمان مشابه و يكسان براي تمام مولكولها باشد تا توزيعي از اندازه و وزن مولكولي داشته باشد . اين مولكولها اساساً كروي هستند كه تمايل به خوشه اي شدن دارند . حضور آسفالتين در نفت به صورت مولكولي به شدت به حضور ساير اجزاي نفت بستگي دارد . از آنجا كه حلاليت مولكولي پايه و اساس تعادل ترموديناميكي است ، نتايج حاصل از مدلهاي ترموديناميكي بر اين اساس و بازگشت پذيري فرايند تشكيل رسوب آسفالتين ، ماهيت مولكولي آن را در نفت تأييد كرده است .

    برخي از محققين هم معتقدند كه مولكولها يا ذرات آسفالتين در نفت مي توانند به صورت حلاليت تلفيقي از حلالهاي كلوئيدي وجود داشته باشند . نتايج تجربي نشان داده است كه رسوب آسفالتين حاصل از دو بخش كلوئيدي و مولكولي است كه هريك بطور مجزا عمل مي كنند .

صفحه 5 از 8 نخستنخست 12345678 آخرینآخرین

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •