صفحه 10 از 10 نخستنخست 12345678910
نمایش نتایج: از شماره 91 تا 97 , از مجموع 97

موضوع: مقالات مهندسی مکانیک

  1. #91
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    سیال های مبرد

    براي انتقال حرارت از داخل يك محفظه يا اتاق به خارج , احتياج به يك واسطه است . در يك سيستم سرد كننده مكانيكي استاندارد , عمل گرفتن حرارت با تبخير مايعي در دستگاه تبخير, و پس از دادن آن در دستگاه تقطير صورت مي گيرد و اين امر باعث تغيير حالت ماده سرمازا از بخار به مايع مي گردد .مايعاتي كه بتوانند به سهولت از مايع به بخار و بالعكس تبديل شوند به عنوان واسطه انتقال حرارت به كار برده مي شوند, زيرا اين تغيير حالت باعث تغيير حرارت نيز مي گردد .برخي از اين مواد سرمازا از مواد ديگر مناسب تر هستند .

    خصوصيات مواد سرمازا :
    سيالي كه به عنوان ماده سرمازا مورد استفاده قرار مي گيرد بايد داراي كيفيات زير باشد:

    1- سمي نباشد.
    2- قابل انفجار نباشد .
    3-اكسيد كننده نباشد .
    4- قابل اشتعال نباشد .
    5- در صورت نشت به سهولت قابل تشخيص باشد
    6- محل نشت آن قابل تعيين باشد .
    7- قادر به عمل كردن در فشار كم باشد (نقطه جوش پايين) .
    8- از نوع گازهاي پايدار باشد .
    9- قسمت هايي كه در داخل مايع حركت مي كند به سهولت قابل روغنكاري باشند.
    10- تنفس كردن آن مضر نباشد .
    11- داراي گرماي نهان متعادلي براي مقدار تبخير در واحد زمان باشد .
    12- جابجايي نسبي آن براي ايجاد مقدار معيني برودت كم باشد .
    13- داراي كمترين اختلاف, بين فشار تبخير و تقطير باشد .

    ماده سرمازا نبايد خورنده باشد (ايجاد زنگ زدگي كند) تا ساختن تمام قطعات سيستم از فلزات معمولي با عمر خدمتي طولاني تر عملي گردد .
    مبناي مقايسه مواد سرمازاي به كار رفته در صنعت سرد كنندگي , بر اساس حرارت تبخير 5 درجه فارنهايت و حرارت تقطير 68 درجه فارنهايت است .

    شناسايي مواد سرمازا بوسيله شماره گذاري :
    روش جديد مشخص كردن مواد سرما زا در صنايع تبريد , شماره گذاري اين مواد است . پيش حرف R كه مخفف كلمه REFRIGERANT به معناي سرمازا است نوشته مي شود .روش مشخص نمودن شماره اي توسط انجمن مهندسين تهويه ,تبريد و حرارت مركزي آمريكا متداول شده است .

    طبقه بندي مواد سرما زا :
    اين مواد بوسيله دو سازمان ملي آمريكايي به نام هاي :
    The national refrigeration safety code
    The national board of fire underwriters.
    طبقه بندي شده اند.

    سازمان اول تمام مايعات سرمازا به سه گروه زير تقسيم بندي مي كند:

    گروه اول – بي خطر ترين مواد كه شامل R-500,R-14,R-13,R-502-R-744 R-13BL,R-22,R-30,R-12,R-114,R-21,R-11,R-113 مي باشد.

    گروه دوم _ مواد سمي و تا حدي قابل اشتعال كه شاملR-717,R-40,R-764, R-1130,R-160,R-611 مي باشد.

    گروه سوم _ مواد قابل اشتعال كه شامل R-50,R-1150,R-170,R-290-
    مي باشد.

    موسسه NBFU نيز مواد سرمازا را نسبت به درجه سمي بودن آن ها طبقه بندي كرده است كه شامل شش گروه است كه بي خطر ترين آن ها گروه يك است.

    GROUP 1 CLASS
    R-744 Carbon Dioxide 5
    R-12 6
    R-13B1 Kulene-131 6
    R-21 6
    R-114 6
    R-30 Carrene No. 1 4
    R-11 6
    R-22 5
    R-113 4
    R-500 6
    R-502 6
    R-503 6
    R-504 6
    R-40 Methylene Chloride 4
    GROUP 2
    R-717 Ammonia 2
    R-1130 Dichloroethylene 4
    R-160 Ethyl Chloride 4
    R-40 Methyl Chloride 4
    R-611 Methyl Formate 3
    R-764 Sulphur Dioxide 1
    GROUP 3
    R-600 Butane 5
    R-170 Ethane 5
    R-601 Iso Butane 5
    R-290 Propane 5

    در اينجا به بررسي بعضي از مبردهاي متداول مي پردازيم.
    22-R (دي كلرودي فلورو متان ) (CCl2F2) :

    ماده اي است بيرنگ تقريبا بي بو و در فشار اتمسفر داراي نقطه جوشي معادل 7/21 درجه فارنهايت است . ماده اي غير سمي و غير قابل اشتعال است و خورنده نيست , از نظر شيميايي در حرارت هاي عملياتي بي اثر است و از نظر حرارتي تا 1022 درجه پايدار باقي مي ماند .
    12- R داراي گرماي نهان نسبتا پايين است و براي مصرف در دستگاه هاي كوچك تر مناسب مي باشد , زيرا گردش مقدار زيادي ماده سرما زا امكان استفاده از مكانيزم هاي عملياتي و تنظيم دقيق تر و در عين حال با حساسيت كمتر را ميسر مي كند . از اين مبرد در كمپرسور هاي پيستوني و دوراني و انواع بزرگ گريز از مركزي استفاده مي شود .

    اين ماده در فشار هاي سر , و معكوس (پس فشار) كم , ولي مثبت با يك بازدهي حجمي خوب كار مي كند , 12- R , در 5 درجه فارنهايت , فشاري معادل 5/26 پوند بر اينچ مربع مطلق , و در 86 درجه فارنهايت داراي فشاري مطلق معادل 8/108 پوند بر اينچ مربع است .
    گرماي نهان آن در 5 درجه فارنهايت 2/68 بي-تي- يو است و نشت آن به سهولت و با استفاده از نشت ياب الكترونيكي يا مشعل هالايد مشخص مي گردد.

    در حرارت صفر درجه مقدار كمي آب در 12-R حل مي شود كه نسبت آن بر حسب وزن 6 در مليون است . مايعي كه توليد مي شود تا حدودي بر روي اكثر فلزات معمولي كه در ساختمان دستگاه هاي سرد كننده استفاده مي شود , ايجاد زنگ مي كند . اضافه كردن روغن هاي معدني هيچگونه اثري در ايجاد رنگ بوسيله مايع ندارد ولي احتمالا كم رنگ شدن مايع به وسيله آب را كاهش مي دهد . حساسيت ماده 12-R نسبت به آب در مقايسه با 22-R و 502-R بيشتر است . تا 90 درجه قابل حل شدن در روغن است . در اين حرارت روغن شروع به جدا شدن مي كند و به علت سبك تر بودن وزن در سطح آن جمع مي شود .
    به كار بردن 30 پوند از اين ماده به ازاي هر 1000 فوت مكعب فضاي تهويه شده كاملا بي خطر است .
    اين ماده در سيلندر هاي به اندازه مختلف عرضه مي شود و احتمالا در قوطي هاي سر بسته و محكم نيز يافت مي شود . كد رنگي مخصوص 12- R سفيد است .

    22-R منوكلرودي فلورو متان (CHCLF2)

    22-R يك ماده سرمازاي مصنوعي است كه انحصارا براي دستگاه هاي تبريدي كه درجه تبخير پاييني دارند ساخته شده است . يكي از موارد استفاده آن در دستگاه هاي انجماد سريع است كه حرارت آن ها بين 20 تا 40 درجه فارنهايت حفظ مي گردد . همچنين در دستگاه هاي تهويه مطبوع و يخچال هاي خانگي نيز به طور موفقيت آميزي مورد استفاده قرار گرفته است . 22-R فقط در كمپرسورهاي پيستوني به كار گرفته مي شوند و فشار عملياتي آن به نحوي است كه براي نيل به درجات پايين , نيازي به كار كردن در فشار هاي كمتر از جو نيست . گرماي نهان آن به ازاي هر پوند در 5 درجه فارنهايت 21/93 بي-تي-يو است . فشار عادي سر كمپرسور در 86 درجه 82/172 پوند بر اينچ مربع مطلق است .

    22-R ماده اي پايدار ,غير سمي ,بدون اثر اكسيد كنندگي , بي آزار و غير قابل اشتعال است . فشار اواپراتور در 5 درجه فارنهايت 43 پوند بر اينچ مربع است . حلاليت آن در آب 3 برابر 12-R است . بنابراين رطوبت در اين ماده بايد حداقل باشد .به همين دليل استفاده از رطوبت گير و خشك كن در اين مورد بيشتر است .
    به علت تمايل شديد تر 22-R به آب تعداد بيشتري رطوبت گير براي خشك كردن آن لازم است. 22­-R تا حرارت16درجه فارنهايت در روغن حل مي شود وپس از ان روغن شروع به جدا شدن نموده و چون از مايع سبك تر است در سطح آن جمع مي شود. وجود نشت را مي توان به وسيله ي نشت ياب الكترونيكي و يا مشعل هالايد تيين كرد.

    مواد سرما زا ي مخلوط:

    همانطور كه از نامشان پيداست , اين مواد مخلوطي از دو يا چند ماده ي سرما زا هستند, ولي مانند يك ماده سرما زاي واحد عمل مي كنند. و چهار نوع متداولتر آنها عبارتند از:

    1)R-500 كه مخلوطي است از 8/73 درصدR-12 و 2/26 درصدR-152a
    2)R-502 كه مخلوطي است از8/ 48درصدR-22 و2/ 51درصدR-115
    3) كه مخلوطي است از1/ 41درصدR-23 و9/ 59درصدR-13
    4) كه مخلوطي است از2/ 48درصدR-32 و8/ 51درصدR-115

    اين مواد سرما زا موادي ثبت شده هستند كه مراحل تركيب آنها پيچيده است و متصدي سرويس نبايد با اختلاط مواد مبرد اقدام به ساختن ماده اي مخصوص بنمايد.

  2. #92
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    مشکلات معمول در تله هاي بخار


    نشتي بخار:


    نشيمن شير در تله بخار مي تواند در معرض خوردگي يا فرسايش قرار گيرد. زماني که اين نشيمن صدمه ببيند، شير مربوطه نخواهد توانست به خوبي در جاي خود قرار گيرد و در نتيجه، بخار فعال از تله نشت خواهد کرد. اگر تله بخار داراي اندازه اي بيش از حد لازم باشد، اين نشتي مي تواند مقدار قابل توجهي را از بخار هدر دهد. حتي تله هاي بي متال که براي حالت کاملاً باز با حداقل فوق سرد شدن کالبيره مي شوند، ممکن است در صورتي که مقدار بار کاهش يابد، مقداري بخار را عبور دهند. يک تله ترموديناميکي که به خوبي کار مي کند نيز اگر فشار کندانسه بسيار پائين باشد، ممکن است نتواند کاملاً بسته شود.


    تعيين اندازه نامناسب :


    تله اي که اندازه آن کوچک تر از اندازه لازم باشد، باعث مي شود که کندانسه در بازدهي انتقال حرارت تأثير منفي بگذارد زيرا کندانسه يک فيلم نازک روي سطح انتقال حرارت ايجاد مي نمايد. تله ها معمولاً با استفاده از يک ضرب ايمني براي محاسبه ي ظرفيت تله، چند مرتبه بزرگ تر از اندازه لازم انتخاب مي شوند. تله اي که ظرفيتي بسيار بالاتر از حد نياز داشته باشد، باعث هدر رفتن هزینه ها شده، کارکرد آن کند بوده و توليد فشار معکوس بالايي مي نمايد که ممکن است عمر تله را به ميزان قابل توجهي کاهش دهد.


    آلودگي :


    کندانسه بخار، اغلب داراي ذرات رسوب و محصولات خوردگي است که مي تواند باعث فرسايش شيرهاي تله شود. اگر اين ذرات به اندازه کافي بزرگ باشند، ممکن است حتي باعث مسدود شدن شير تخليه و ياگير کردن آن حالت باز گردند. براي اجتناب از اين مشکل، بايد در بالا دست هر تله اقدام به نصب يک صافي نمود. اين صافي بايد هنگامي که سيستم براي اولين بار راه اندازي مي شود و هنگامي که هرگونه تعمير و تعويض در لوله کشي سيستم صورت مي گيرد، تميز شود.


    ايجاد صدا:


    به استثناي تله هاي ترموديناميکي، اغلب تله ها نسبتاً بي صدا عمل مي کنند. در برخي موارد، تله ها ممکن است صدايي جزئي توليد کنند که ناشي از تخليه ي کندانسه به داخل بخار در پايين دست شير تله مي باشد. ايجاد صدا در سيستم بخار معمولاً توسط حرکت کندانسه در خطوط برگشت عمودي، ضربه قوچ و يا تله هاي معيوب که بخار فعال در آن ها به کندانسه خط برگشت نشت مي کند، صورت مي گيرد.


    هواگرفتگي :


    زماني که تله توسط يک لوله افقي بلند با قطر کم به تأسيسات متصل مي شود، کندانسه در فضاي بخار باقي مانده و نمي تواند به سمت تله جريان بايد براي اجتناب از اين پديده، لوله اي که به تله متصل مي شود بايد داراي قطر بيشتر و طول کوتاه تري باشد تا نرخ جريان بالاتري را ايجاد نمايد. يک روش ديگر براي اجتناب، از اين پديده، تعبيه ي يک شير تخليه در نقطه اي در بالاي سيستم مي باشد.


    انسداد توسط بخار :


    زماني که تله توسط يک لوله افقي بلند با قطر کم به تأسيسات متصل مي شود، ممکن است شرايطي به وجود آيد که بخار، مانع از رسيدن کندانسه به تله مي شود. کندانسه تا زماني که نتواند بخار را جابجا نمايد، قادر به رسيدن به تله نخواهد بود. براي اجتناب از اين پديده بايستي تله را تا حد امکان نزديک به سيستم نصب کرده و يا مسير مربوطه تخليه شود. اگر تله درست زير سيستم يا مسير نصب شده باشد يک لوله تبادل بايد بين اين دو بخش در نظر گرفته شود تا به عنوان مسير تخليه عمل کرده و از انسداد مسير توسط بخار جلوگيري نمايد. همچنين مي توان تله ها را با يک شير آزاد کننده انسداد بخار نصب نمود.


    ضربه قوچ:


    کندانسه که در بخش تحتاني خط بخار قرار دارد مي تواند باعث بروز پديده ضربه قوچ شود. زماني که بخار با سرعت بسيار بالا حرکت مي کند هنگام حرکت از روي لايه ي کندانسه باعث ايجاد موج بر روي آن مي گردد. اگر اين حالت افزايش يابد بخار پرسرعت مي تواند کندانسه را به حرکت درآورده و هنگام تغيير راستا، يک ضربه خطرناک ايجاد کند. اين پديده را ضربه قوچ مي نامند. زماني که کندانسه پر سرعت به مانعي برخورد مي کند انرژي جنبشي آن به انرژي فشاري تبديل شده و اين افزايش فشار ناگهاني مي تواند باعث تخريب مکانيسم عملکردي در تله هاي شناور و تله هاي ترموستاتيک فشار متعادل گردد. براي اجتناب از اين پديده بايد از تله هاي قدرتمند مانند تله هاي ترموديناميکي يا تله هاي سطل وارونه استفاده نموده و يا راستاي لوله کشي را عوض نمود.


    انجماد:


    اگر سيستم بخار در حالي که مقدار قابل توجهي کندانسه در تله باقي مانده است متوقف شود و دماي محيط به کمتر از دماي انجماد آب برسد، انجماد در داخل تله رخ خواهد داد. تله هاي شناور و تله هاي ترموستاتيک فشارمتعادل، در اثر انجماد به شدت صدمه مي بيند. اگر احتمال بروز انجماد وجود دارد بايد از تله هاي ترموديناميکي يا تله هاي بي متال که انجماد بر روي آنها بي تأثير است استفاده نمود. يک راه ديگر براي اجتناب از اين پديده باز کردن شيرهاي تخليه بعد از متوقف کردن سيستم مي باشد.


    فقدان شرايط راه اندازي


    اين مشکل در تله هاي سطل وارونه مشاهده مي شود. اين نوع تله ها زماني شروع به کار مي کنند که مقدار آب در داخل آن وجود داشته باشد. اگر يک افت فشار ناگهاني در سيستم رخ دهد و يا اينکه بخار فوق داغ وارد تله شود اين عامل به راه اندازي از بين رفته و تله مزبور قادر به عمل نخواهد بود. براي اجتناب از بروز اين مشکل مي توان از يک شير يک طرفه در خط ورودي تله استفاده نمود.


    راهنماييهايي براي رفع اشکال


    اولين قدم در رفع اشکال سيستم، بررسي اين نکته است که آيا تله بخار به درستي نصب شده است يا خير. رويه هاي مربوط به نصب را براي انواع مختلف تله ها ارائه مي دهد. جدول زیر راهنماييهايي در مورد رفع اشکال سه مشکل معمول در تله ها ارائه مي دهد. اين مشکلات عبارتند از: تله هاي موجود ر سيستم کار تخليه را انجام نداده و يا مقدار تخليه آن بسيار پائين است. تله هاي داراي نشتي بخار فعال مي باشد و تله در ظرفيتي کامل به طور پيوسته در حال تخليه است.

    حل مشکل نشتي بخار فعال در تله ها

    نوع تله

    علت احتمالی

    راه حل

    تمام تله ها

    مجموعه نشيمن شير فرسوده شده است.

    بخش نشيمنگاه شير را تعويض کنيد.

    اوريفيس با رسوبات آب مسدود شده است.

    اوريفيس را تميز نماييد.

    ظرفيت تله کافي نيست.

    بار کندانسه و اختلاف فشار در ورودي تله را محاسبه کرده و يک تله مناسب انتخاب کنيد.

    شناور

    بخش تخليه هوا به خوبي کار نمي کند.

    بخش تخليه هوا را تعويض کنيد.

    بدنه تله با آلودگي انباشته شده و مانع از حرکت شناور و کارکرددرست آن مي شود.

    درپوش تخليه را باز کرده و مسير را با دمش بخار و يا باز کردن و تميز کردن تله تمييز نماييد.

    عنصر ترموستاتيک تله بسته نمي شود.

    عنصر ترموستاتيک را تعويض نماييد.

    سطل وارونه

    بدنه تله با آلودگي انباشته شده و مانع از حرکت استوانه و کارکرد درست آن مي شود.

    درپوش تخليه را باز کرده و مسير را با دمش بخار و يا باز کردن و تميز کردن تله تمييز نماييد.

    استوانه سوراخ شده است.

    استوانه را تعويض کنيد.

    تله داراي شرايط راه اندازي اوليه نيست.

    شير ورودي را براي مدت چنددقيقه ببنديد سپس به آهستگي آن را باز کنيد اگر شرايط آغاز به کار فراهم گرديد تله بايد به درستي کار کند. در غير اينصورت يک شير يک طرفه در مسير رودي نصب کنيد.

    ترموديناميک

    ديسک و نشيمنگاه آن فرسوده شده است.

    تله را عوض کرده و يا ديسک نشيمن را تعويض کنيد.

    بين سطح نشيمن و ديسک آلودگي جمع شده است.

    بخش هاي مربوط را تميز نماييد.

    درپوش تله شل است و بخار از محل اتصال نشت مي کند.

    درپوش را محکم کنيد.

    ترموستاتيک

    عايق بندي دچار مشکل شده است (دماي کندانسه بيش از حد پايين مي آيد و هر قدر کندانسه سردتر باشد دريچه شير بيشتر باز مي شود.)

    مسير را عايق بندي کنيد.

    فشار لوله اصلي پايين است (با پايين آمدن فشار بخار تله بسته نمي شود زيرا بخار کم دما با تله در تماس است)

    فشار لوله اصلي را کنترل کنيد و يا تله را براي تغييرات دما تنظيم نماييد.

    عنصر به کار رفته در تله ي فشار متعادل به دليل وجود ضربه ي قوچ يا بخار فوق داغ صدمه ديده است.

    اين بخش را تعويض نماييد.

    تله بيش از حد کوچک است

    تله هاي اضافي به صورت موازي نصب نماييد.

    تله هاي فشار بالا در کاربردهاي کم فشار نصب شده اند.

    از مکانيسم مناسب استفاده نماييد.

    بويلر مقدار زيادي آب وارد خط بخار مي نمايد.

    شرايط تغذيه آب را تصحيح نماييد.

    با تشکر از جناب آقای مهندس سعید عزت پناهی

  3. #93
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    آشنایی با تله های بخار (Steam Traps)

    له هاي بخار بخش مهمی از سيستم شبكه توزیع بخار محسوب مي گردند . وظيفه اصلي آنها تخليه آب مقطر از سيستم و ارسال آن به خطوط مربوطه و ممانعت از خروج بخار مي باشد . تله بخار كاربرد فراواني در صنعت به ويژه صنعت نفت دارد كه بعضي از كاربردهاي مهم آن عبارتست از :

    1. افزايش كيفيت بخار موجود در خط اصلي بخار از طريق خارج كردن آب مقطر

    2. بـه عنوان پل ارتباطـي خـط لولـه بخـار(Steam supply) و خط تخليـه آب مقطر

    3. در مسير سيال خروجي (بخار) از پوسته يا لوله مبدلهاي حرارتي

    به منظور عملكرد صحيح يك سيستم بخار ، هر تله بخار مي بايستي بدون عبور بخار ، آب مقطر را از خود عبور دهد . وجود تله هاي بخار از كار افتاده ، نشانگر وجود یک منبع اتلاف انرژی مي باشد . در يك واحد بزرگ صنعتي ، ‌بررسي فراگير تله هاي بخار به منظور بازرسي هر يك از آنها الزامي است تا بواسطه اين بازرسـي ، عملكرد آنها و هزينه كلي اتلاف انرژي بخار مشخص شود . بعنوان مثال طبق بررسي هاي انجام شده از 1000 تله بخار بكار رفته در یک سيستم ، 250 مورد داراي تلفات كلي بخار به ميزان 4783 پوند در ساعت بوده است كه هزينه سالانه اي بالغ بر 236,520 دلار را در پي داشته است

    تله هاي بخار بوسيلـه سازنده هاي متعـددي توليـد مي شونـد كه داراي طرحها ، اندازه هـا و خصوصيات عملياتي متنوعي مي باشند . بعضي از تله هاي بخار ، آب مقطر را به صورت پيوسته و بعضي ديگر به صورت متناوب ( بعد از جمع شدن آب مقطر و پر شدن تله از آن ) خارج مي كنند . به هر حال در سراسر دنيا تله بخار واحدي كه براي همه كاربردها مناسب باشد وجود ندارد . انتخاب تله بخار مناسب به منظور عملكرد سيستم بخار با راندمان بالا ،‌ موضوعي پيچيده و بحراني مي باشد . به طور كلي تله بخار يكي از اجزاء ضروري سيستم بخار است و عنصر مهمي در مديريت مناسب بخار و آب مقطر محسوب مي شود كه وظيفه آن نگهداشتن بخار در طول فرآيند براي استفاده حداكثر از حرارت آن و عبور دادن آب مقطر ، گازهاي چگال ناپذیر (Incondensable gas) و هوا در زمان هاي مناسب مي باشد.

    به هر حال هميشه مرسوم بوده است كه به تله هاي بخار به صورت مستقل نگاه شود و اثر آنها بر روي سيستم بخار، اغلب در نظر گرفته نمي شود . مسائل ذکر شده ذيل ، اهميت نگاه كلي به سيستم در انتخاب تله بخار مناسب را مطرح مي كند :

    · آيا واحد سريعا" به دماي عملياتي مي رسد و يا پاسخ آن نسبت به افزايش درجه حرارت کند بوده و عملكرد (بازده) آن پايين تر از حد مورد انتظار است؟

    · آيا سيستم بدون مشكل است يا استفاده از تله بخار نامناسب منجر به پديده هاي ضربه قوچ ، خوردگي و يا نشتي شده و هزينه تعميرات را بالا برده است ؟

    · آيا طراحي سيستم ، اثري منفي بر روي طول عمر و راندمان تله هاي بخار داشته است ؟

    به طور كلي مشكلات ناشي از انتخاب نامناسب تله هاي بخار به صورت پنهان اثر خود را در سيستم نشان مي دهند . در بعضي از مواقع تله هاي بخار به طور كامل مسدود مي شوند بدون اينكه مشكلي جدي بوجود آيد . به عنوان مثال يك تجزيه كننده صنعتي (Industrial digester) را در نظر بگيريد . كه به دليل مسدود شدن يكي از تله هاي بخار ، آب مقطر از يكي از خروجي هاي آن بطور کامل تخليه نمي شود در اين شرايط اغلب مواقع آب مقطر باقـي مانده به نقاط تخليه ديگر منتقل مي شود تا از آنجا تخليه گردد . اگر اين نقاط تخليه هم مسدود باشند مشكلي جدي پيش خواهد آمد ولي احتمال مسدود بودن همزمان همه نقاط كم است .



    بايد به اين نكته توجه گردد كه مشكلات ناشي از فرسايش شيرهاي كنترل، نشتي و‌كاهش بازده واحد بوسیله توجه ويژه به تله هاي بخار رفع مي گردد. تله هاي بخار اگرچه داراي ابعاد كوچكي مي باشند وليكن از اهميت بالايي برخوردارند كه اين اهميت معمولا" ناديده گرفته مي شود .

    استهلاك در هر سيستم ، امري طبيعي است كه تله هاي بخار به عنوان جزئي از سيستم از اين امر مستثنـي نمي باشند . هنگامي كه تله هاي بخار در حالت باز ازكار مي افتند مقدار مشخصی از بخار به خط برگشتی آب مقطر وارد می گردد . خوشبختانه در حال حاضر وسايل تشخيص سريع عبور بخار از تله بخار براي مصرف كنندگان موجـود است .

  4. #94
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    برج خنک کننده

    برج خنک کننده :

    دراکثر کارخانجات کوچک و بزرگ یکی از مهمترین و اساسی ترین دستگاهها می توان انواع برجهای خنک کننده را نام برد.
    برجهای خنک کننده علاوه بر آب به منظور خنک کردن سیالاتی دیگر در صورت لزوم مورد استفاده واقع می شود.

    با توجه به اینکه برجهای خنک کننده معمولاًً حجیم می باشند و بعلت پاشیدن آب در محیط اطراف خود و خرابی تجهیزات آن را معمولاًٌ در انتهای فرایند نصب می کنند.
    اگراز وسایل برجهای خنک کننده صرف نظر نشود برای ساخت برج تکنولوژی بالایی نیاز نیست همانطور که در ایران در حال حاضر ساخت این برجها در حد وسیعی صورت می گیرد .برجها با توجه به شرایط فیزیکی و شیمیایی خاص خود دچار مشکلاتی می شوند ولی معمولاٌ زمانی لازم است تا این مشکلات برج را از کار بیاندازد طولانی است.،ولی عملاٌ اجتناب ناپذیر است.
    در این مجمعه تا سر حد امکان سعی شده است که دیدی نسبتاً کلی راجع به برج جنبه ای به خواننده منتقل شود و تا حد امکان از جزيیات مربوط به برجهای خنک کننده توضیح لازم داده شده باشد.


    پیشگفتار :

    برج خنک کننده دستگاهی است که با ایجاد سطح وسیع تماس آب با هوا تبخیر آسان می کند و باعث خنک شدن سریع آب می گردد.عمل خنک شدن در اثر از دست دادن گرمای نهان تبخیر انجام می گیرد، در حالی که مقدار کمی آب تبخیر می شود و باعث خنک شدن آب می گردد.باید توجه داشت آب مقداری از گرمای خود را به طریق تشعشع ،هدایتی وجابجایی و بقیه از راه تبخیر از دست می‌دهد.
    بیشتر دستگاههای خنک کن از یک مدار بسته تشکیل شده اند که آب در این دستگاهها نقش جذب ، دفع و انتقال گرما را به عهده دارد، یعنی گرمای بوجود آمده توسط ماشین جذب و از دستگاه دور می سازد. این کار باعث ادامه کار یکنواخت و پایداری دستگاه می شود.

    در دستگاههایی که به دلایلی مجبوریم آب را بگردش در آوریم و یا به کار ببریم باید بنحوی گرمای آب را دفع کرد. با بکار بردن برجهای خنک کننده این کار انجام می گیرد. در تمام کارخانه ها تعداد زیادی دستگاههای تبدیل حرارتی (heat exchanger) وجود دارد که در بیشترآنها آب عامل سرد کنندگی است.
    بدلایل زیر آب معمولترین سرد کننده هاست:

    1. بمقدار زیاد وارزان در دسترس می باشد.
    2. به آسانی آب را می توان مورد استفاده قرار داد .
    3. قدرت سرد کنندگی آب نسبت به اکثر مایعات( در حجم مساوی )بیشتر است.
    4. انقباض و انبساط آب با تغییر درجه حرارت جزیی است.
    هر چند که آب برای انتقال گرما بسیار مناسب است با بکار بردن آن باعث بوجود آمدن مشکلاتی نیز می شود.

    آب با سختی زیاد باعث رسوب سازی در دستگاهها شده و همچنین از آنجایی که بیشتر این دستگاهها از آلیاژ آهن ساخته شده اند مشکل خوردگی بوجود می آید. از طرف دیگر بیشتر برجهای خنک کننده در بر خورد مستقیم با هوا و نور خورشید می باشند محیط مناسبی برای رشد باکتریها و میکرو ارگانیسم ها نیز می باشد که آنها نیز مشکلاتی همراه دارند.

    وارد شدن گرد و خاک بداخل برج نیز در بعضی مواقع ایجاد اشکال می نماید.در کل این مشکلات باعث می شود که بازدهی دستگاه کم شده و در نتیجه از نظر اقتصادی مخارج زیادتری خواهند داشت. در این مجموعه طبیعت این مشکلات و شرایط بوجود آمدن آنها و راههای جلوگیری از آنها را بطور مختصر شرح خواهیم داد.موارد استفاده از برجهای خنک کننده را نیز در بخش های دیگری از این مجموعه را در بر می گیرد.

    عموماً برجهای خنک کننده (cooling tower) را به سه گروه تقسیم می کنند:
    1. برجهای خنک کننده مرطوب
    2. برجهای خنک کننده مرطوب- خشک
    3. برجهای خنک کننده خشک
    در برجهای خنک کننده مرطوب، آب نقش اصلی و اساسی را داشته و هدف نیز همان خنک کردن آب است. این نوع دستگاهها که خود به چند گروه و دسته تقسیم می شوند در صنعت دارای کاربرد فراوانی است.
    از یرجهای خنک کننده خشک بیشتر در مکانهای که آب کافی برای خنک کردن برج وجود ندارد استفاده می شود. عمل خنک کردن آب را نیز میتوان از برجهای سینی دار بصورت مرحله ای انجام داد.ولی عملاً بعلت وجود هزینه های زیاد ساخت ،نگهداری و کنترل سیستم این روش ، معمول نمی باشد.

    برای انجام عملیات خنک سازی آب می توان از برجهای آکنده و سینی دار استفاده نمود.با وجود این در مواردی که فازهای مورد نظر آب و هوا با شند بعلت فراوانی و ارزان بودن فازهای فوق بدلایلی که در صفحه قبل ذکر شد از دستگاههای دیگری استفاده می گردد که ساختن و نگهداری آنها مستلزم هزینه های زیادی نمی باشد. از این جهت بیشتر دستگاههایی که در مقیاس صنعتی بکار می رود ساختمان و خصوصیات بسیار عمده ای را دارا است که اینک به انواع مختلف این دستگاهها اشاره می شود.

    بررسی برجهای خنک کننده و اجزاء آن
    برج خنک کننده : COOLING TOWER
    برج خنک کن دستگاهی است که با ایجاد سطح وسیعی در تماس آب با هوا ، عمل تبخیر را آسان نموده و در نتیجه باعث خنک شدن سریع آب می گردد.
    عمل خنک شدن در اثر از دست دادن گرمای نهان تبخیر انجام می گیرد در حالی که مقدار کمی آب بخار می شود و سبب خنک شدن آب می گردد.باید توجه داشت که آب مقدار اندکی از گرمای خود را از طریق تشعشع (Radiation) ودر حدود 4/1آن را از راه هدایت (Conduction) و جابجائی (Convection) و بقیه را از راه تبخیر از دست می‌دهد.
    اختلاف فشار بخار آب بین سطح آب و هوا باعث تبخیر می شود.این اختلاف بستگی به دمای آب و میزان اشباع هوا از آب دارد.


    مقدار گرمای که بوسیله مایعی جذب یا دفع می شود از رابطه زیر بدست می آید :
    E=W×S×T
    در رابطه بالا:
    E :گرمای دفع یا جذب شده بر حسب BTU/hr یا CAL/hr
    W :دبی مایع خنک شونده بر حسب lb/hr
    S : گرمای ویژه مایع خنک کننده بر حسب lb.f/ Btu
    dT :کاهش دمای مایع خنک شونده بر حسب f

    در حالیکه عمل خنک شدن از طریق تبخیر انجام می گیرد گر مای نهان تبخیر از دست داده شده باید به آن اضافه گردد و آن برابر است با حاصل ضرب گرمای نهان تبخیر در دبی .

    مقدار تبخیر بستگی دارد به سطح بر خورد آب با هوا و همچنین شدت جریان هوا دارد. برای اینکه حداکثر بهره برداری که در طرح آن بکار رفته است رعایت شود در برجهای خنک کننده که آکنده های آن از نوع splash packing می باشد آب به صورت قطره های در سطوح برج پخش می شود تا سطح وسیعی بوجود آید البته برای این منظور می توان از آکنه های نوع film packing نیز استفاده کرد.
    جریان هوا در برج به صورت کشش طبیعی با استفاده از دودکش های هذلولی شکل یا کشش مکانیکی بوسیله بادبزنهای مناسب در جهت مخالف آب ( counter-flow) و یا به طور متقاطع (cross-flow) با آن به جریان می افتد .

    سیستم برج خنک کننده :

    در سیستم برج خنک کننده آب گرم کندانسور از برج خنک کننده عبور می کند و با هوا تماس می یابد. در برجهای خنک کننده با کشش طبیعی ،پوسته خارجی برج از بتن مسلح ساخته شده ودر روی پایه ها تکیه دارد . هوا از قسمت پائین وارد برج خنک کننده می شود و به طرف بالا جریان می یابد و از دهانه بالای برج خارج می گردد.

    انواع دیگری از برجهای خنک کننده که از چوب و سایر مصالح ساخته می شود نیز وجود دارد.در برجهای خنک کننده با کشش طبیعی هوا شکل برج طوری طراحی می شود که جریان سریع هوا در داخل برج بوجود آید.
    آب گرم از کندانسور در ارتفاع 10 تا 15 متر بالاتر از سطح استخر به سیستم پخش کننده آب وارد می شود . در برجهای قدیمی تر صفحه ای که آب خروجی از کندانسور به آن ریخته می شود دارای سوراخهای منظمی در قسمت پائین است که آب از داخل این سوراخها به فنجانهای زیرین می ریزد. این فنجانها باعث پاشش آب و تبدیل آنها به قطرات کوچک می شوند. یک سیستم خیلی جدید برای پخش آب در برج خنک کننده بکار بردن لوله هایی است که در سطح بالای آن شیپوره هایی برای پاشش آب تعبیه شده است.
    تبادل حرارت بین هوای بالارونده از برج و آبی که از برج سرازیر است با تغییر حرارت محسوس در اثر اختلاف درجه حرارت بین آب و هوا انجام می شود. سهم این قسمت از تبادل حرارتی خیلی کم است و قسمت عمده تبادل در اثر تبخیر مقدار کمی آب که پیوسته همراه هوا می باشد،انجام می شود. در اثر این عمل مقدار زیادی گرما از آب سرازیر شده در برج خنک کننده ( بستگی به مقدار آبی که تبخیر شده است) به هوا منتقل می گردد(Evaporating loss). ضمناً مقداری از قطرات آب بوسیله هوا بخارج از برج پراکنده می شود(Windage loss). برای جلوگیری از خروج قطرات آب یک شبکه چوب در اطراف برج و حدود 3 متر بالاتر از توده تخته ها قرار دارد . کمبود آب تبخیر شده در سیستم برج خنک کننده باید از منبع خارجی جبران شود که به آن ،آب تکمیلی یا آب جبرانی (Makeup) گویند . برای این منظور در صورت امکان از آب رودخانه استفاده کرد یا فاضلابها را تا حد امکان صاف و تصفیه کرده و استفاده نمود .
    هنگامیکه از نظر فضای ساختمان برج خنک کننده محدودیتی وجود داشته باشد ظرفیت برج خنک کننده راتا حد امکان با استفاده از بادبزنهای مخصوص و بزرگی اضافه می نمایند. این بادبزنها مقدار عبورهوای خنک کننده در داخل برج را زیاد می نماید .

    عوامل مؤثر در طراحی برجهای خنک کننده :
    عوامل مؤثر در طراحی برجهای خنک کننده را بطور خلاصه می توان بصورت زیر بیان کرد :
    1. میزان افت درجه حرارت (اختلاف دمای ورودی وخروجی برج)
    2. اختلاف بین درجه حرارت آب سرد و درجه حرارت مرطوب هوا
    3. دمای مرطوب محیط : اصولاً خنک کردن آب زیر این دما غیر ممکن است .
    4. شدت جریان آب
    5. شدت جریان هوا
    6. نوع آکنه های برج
    7. روش پخش آب
    به تجربه ثابت شده است که برای هر 10 درجه فارنهایت افت دما در برج خنک کننده میزان تبخیر در حدود یک درصد کل آب در حال گردش می باشد .

    چون نمک های کلرور حلالیت زیادی دارند غلظت یون کلر در آب ورودی به برج وآب در حال گردش راهنمای بسیار خوبی برای تعیین غلظت بوده و بنابراین همیشه باید آنرا بازدید و بررسی نمود .
    افزایش غلظت مواد محلول و مواد معلق در آب در حال گردش در برج خنک کننده ایجاد اشکال می نماید که برای جلوگیری از افزایش غلظت مواد محلول و مواد معلق مقداری از آب در حال گردش را تخلیه می کنند که این آب در صنعت به زیر آب (Blow down) معروف است .
    مقدار آب برج همچنین ممکن است تصادفی یا بوسیله باد تقلیل یابد . اصولاً در برجهای خنک کننده مقداری آب بصورت گرد درآمده و توسط باد یا کشش از برج خارج می شود .
    مقدار تخلیه لازم در یرج برای کنترل مواد محلول و معلق مجاز را می توان از رابطه زیر بدست آورد :
    M=(B+W)*C
    که در رابطه فوق
    B : مقدار زیر آب بر حسب gal/hr یا m3/hr
    E : مقدار آب تبخیر شده بر حسب gal/hr یا m3/hr
    C : ضریب غلطت پیشنهاد شده برای برج
    W : مقدار آبی که توسط باد خارج می شود بر حسب gal/hr یا m3/hr
    مقدار آبی که باد همراه خود از برج خارج می سازد در رابطه بالا منفی است ،زیرا آب مواد محلول و معلق را نیز با خود می برد . بنابراین تاثیر در غلظت و بالا بردن املاح آب ندارد .

    مقدار آب لازم جهت آب کسری برج از رابطه زیر بدست آورد :
    MAKE UP = E +B + W
    اطلاعاتی که از طرف خریداران در اختیار فروشندگان قرار می گیرد در طرح برج اهمیت فراوانی دارد . مانند اختلاف دما ، مقدار آب در حال گردش ،مقدار زیر آب .
    کمبود آب در اثر تبخیر و باد را با استفاده از رابطه های بالا بررسی می کنند .

    قسمتهای اصلی برج خنک کننده:

    الف)لوله ها و اكنه ها
    شامل قسمتهای هستند که درجریان انتقال حرارت دخالت داشته در ضمن باعث می شود که مقدار آب گرد شده که همراه باد خارج می شود کم شده و از خروج آنها از برج جلوگیری شود.همچنین نگهدار خوبی برای قسمتهای دیگر برج می باشد . در مورد مشخصات آکنه ها در همین فصل توضیح داده خواهد شد.
    ب)حوضچه
    حوضچه در پائین برج قرار دارد که آب خنک کننده در آن جمع می گردد.به حوضچه یک جریان بنام آب تکمیلی یا آب جبرانی (MAKE UP) وارد می شود و یک جریان برای استفاده در دستگاههای تبادل حرارت از آن خارج می گردد .علاوه بر جمع آوری آب در حوضچه ،آب قبل از اینکه به سمت کندانسور پمپ شود صاف نیز می گردد.
    حوضچه های برجهای بزرگ و مفید از بتن ساخته شده اند .عموماً این حوضچه ها طوری طراحی می شوند که برج بدون اضافه کردن آب جبرانی می تواند برای چندین ساعت کار کند .
    از زهکش برای برطرف کردن لجن ته نشین شده و کنترل سطح آب در حالتی که جریان موج دار که در کف قرار دارد ترک می کند و به میان سرندی که از ورود اشغال تجمع یافته به ورودی پمپ جلوگیری می کند ،می ریزد .

    پ)بادبزنها
    در برجهای خنک کننده با کشش مکانیکی باد بزنهای نصب می شوند تا جریان هوای لازم را جهت عبور از آکنه ها تولید نماید .بادبزنها در برجهای خنک کننده با کشش مکانیکی کاربرد دارند . توضیح در این مورد ضرورتی ندارد و به همین مقدار اکتفا می شود .

    ت) حذف کننده ها
    این وسیله از خارج شدن قطرات آب بوسیله کشش هوا از برج جلوگیری بعمل می آورد . تیغه ها معمولاًطوری نصب می شوند که با سطح افق زاویه ای در حدود 45 درجه بسازد .جنس این تیغه ها از چوب ، فلز یا پلاستیک ممکن است ساخته شده باشند .درباره کشش و حذف کننده های کشش بعداً مفصلاً توضیح داده خواهد شد .

    ث) آکنه ها
    دو نوع آکنه ها که در برجهای خنک کننده ممکن است مورد استفاده قرار گیرد عبارتند از :
    1. SPLASH PACKING
    2. FILM PACKING
    1. SPLASH PACKING :
    در این نوع آکنه ها آب بر اثر برخورد با تیغه ها پخش و به صورت قطره قطره در آمده که در نتیجه ایجاد سطح وسیع می نماید .از آنجایکه قطرات آب همراه پیوسته بوده و وزن سنگین دارند این نوع دسته بندی ممکن است در اثر جریان دائمی از هم گسیخته گردد.

    2. FILM PACKING :
    در این نوع آکنه ها سطح وسیع از آب در اثر جریان آن در روی تیغه ها بوجود می آید . به طرق گوناگون می توان چنین سطح وسیعی ایجاد کرد
    a. GIRD PACKING
    در این نوع آکنه ها از یک سری شبکه های که معمولاً از چوب بوده و روی یکدیگر قرار گرفته اند استفاده می شود .این شبکه ها طوری نصب گردیده که همراه هر شبکه با شبکه های اطراف خود زاویه 90 درجه می سازند وباین شکل در سطوح شبکه ها پخش می گردد .
    b. RANDOM PACKING
    این نوع آکنه ها موادی با سطح زیاد درست شده که به طور نا منظم در داخل برج قرار دارند . یکی از دلایل نا مرغوب بودن این نوع آکنه ها ایجاد مقاومت زیاد در مقابل جریان هوا می باشد . این نوع آکنه ها دارای قسمتهای حلقوی است که قطر هر حلقه با طول آن برابر است . این حلقه ها از جنس های مختلفی یوده وسطح تماس آب با هوا را زیاد می کنند.
    c. PLATE TYPE FILM PACKING
    این نوع آکنه ها از صفحات نازک پلاستیکی چین دار ساخنه شده اند که با زاویه کمی کمتر از 90 درجه با سطح افق نصب شده اند. چین های روی صفحات باعث بوجود امدن سطح زیاد می گردند .
    مشخصات و خصوصیات آکنه ها در بخش های آینده تشریح خواهد شد .آکنه ها باید طورب انتخاب شوند تا هم سطح تماس آب و هوا برای نسبتهای بالای انتقال حرارت و انتفال جرم مناسب یاشند و هم مقاومت کمتری در مقابل جریان هوا داشته باشند .آکنه ها باید محکم ، سبک و در برابر خوردگی و خراب شدن مقاوم باشد.

    مشخصات و خصوصیات آکنه ها :
    مشخصات و خصوصیات آکنه یک برج خنک کننده را در یک برج خنک کننده آزمایشی اندازه گیری می کنند. یک نمونه از این برج در نیروگاه برق groyden A در سال 1950 بنا شده بود و در آن زمان فکر می کردند بزرگترین نوع خود در کشور باشد . در این برج یک مقطع از آکنه با مربعی به ضلع 4 ft وعمق 8 ft را می توان زیر یک تغییر بار آب و هوا و اتلاف حرارتی برای اندازه گیری ضریب انتقال حجمی و مقاومت جریان هوا نصب و آز مایش کرد . بزرگی این برج یک مسئله اساسی است در غیر اینصورت مقدار آبی که به ظرف پائین دیواره ریزش می کند کافی است تا بر روی دقت آزمایش تاثیر بگذارد.
    هر دو جریان آب وهوا توسط اوریفیس اندازه گیری می شود . جریان آب بیشتر در مقابل یک حجم اندازه گیری شده تانک ، چک خواهد شد.

  5. #95
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    نيروگاه ها - Power Stations


    در دنيا 5 منبع انرژي ,كه تقريبا تمام برق دنيا را مهيا مي كنند , وجود دارد. آنها ذغال سنك, نفت خام, گاز طبيعي , نيروي آب و انرژي هسته اي هستند. تجهيزات هسته اي , ذغالي و نفتي از چرخه بخار براي برگرداندن گرما به انرژي الكتريكي : بر طبق ادامه متن : استفاده مي كنند.

    نيروگاه بخاري از آب بسيار خالص در يك چرخه يا سيكل بسته استفاده مي كند. ابتدا آب در بويلرها براي توليد بخار در فشار و دماي بالا گرما داده مي شود كه عموما دماو فشارآن در يك نيروگاه مدرن به 150 اتمسفرو550 درجه سانتيگراد مي رسد. اين بخار تحت فشار زياد توربينها را ( كه آنها هم ژنراتورهاي الكتريكي را مي گردانند , و اين ژنراتورها با توربينها بطور مستقيم كوپل هستند ) مي گردانند يا اصطلاحا درايو مي كنند. ماكزيمم انرژي از طريق بخار به توربينها داده خواهد شد فقط اگر بعداً همان بخاراجازه يابد در يك فشار كم ( بطور ايده آل فشار خلاء) از توربينها خارج شود . اين مطلب مي تواند توسط ميعان بخار خروجي به آب بدست آيد.

    سپس آب دوباره بداخل بويلرها پمپ مي شود و سيكل دوباره شروع مي گردد. در مرحله تقطير مقدرا زيادي از گرما مجبور است از سيستم استخراج شود. اين گرما در كندانسور كه يك شكل از تبادل كننده گرمايي است , برداشته مي شود. مقدار بيشتري از گرماي آب ناخالص وارد يك طرف كندانسور مي شود و آن را از طرف ديگر ترك مي كند بصورت آب گرم , داشتن گرماي به اندازه كافي استخراج شده از بخار داغ براي تقطير آن به آب. در هيچ نقطه اي نبايد دو سيستم آبي مخلوط شوند. در يك سايت ساحلي آب ناخالص داغ شده به سادگي به دريا برگشت داده مي شود در يك نقطه با فاصله كوتاه. يك نيروگاه 2 GW به حدود 60 تن آب دريا در هر ثانيه احتياج دارد. اين براي دريا مشكل نيست , اما در زمين تعداد كمي از سايتها مي توانند اينقدر آب را در يك سال ذخيره كنند. چاره ديگر بازيافت آب است. برجهاي خنك كن براي خنك كردن آب ناخالص استفاده مي شوند بطوريكه آن مي تواند به كندانسورها برگردانده بشود , بنابراين همان آب بطور متناوب بچرخش در مي آيد. يك برج خنك كن از روي ساحختار سيماني اش كه مانند يك دودكش خيلي پهن است شناخته شده است و بصورت مشابه نيز عمل مي كند. حجم زيادي از هوا داخل اطراف پايه ( در پايين و داخل و مركز لوله برج ) آن كشيده مي شود و ازميانه بالايي سرباز آن خارج ميشود. آب گرم و ناخالص به داخل مركز داخلي برج از تعداي آب پاش نرم ( آب پاش با سوراخهاي ريز ) پاشيده مي شود و هنگاميكه آن فرو ميريزد با بالارفتن هوا( توسط هواي بالا رونده ) خنك مي شود. سرانجام آب پس از خنك شدن در يك حوضچه در زير برج جمع مي شود. برج خنك كن وافعا يك تبدل دهنده كرمايي دوم , كه گرماي آب ناخالص را به هواي اتمسفر مي فرستد , است, اما نه مانند تبادل دهنده گرمايي اول , در اينجا دوسيال اجازه مي يابند با هم تماس داشته باشند و در نتيجه مقداري ار آب توسط تبخير كم مي شود.

    برجهاي خنك كن هرگز قادر به كاهش دماي آب ناخالص تا پايينتر از دماي حدي هوا نيستند بطوريكه كارآيي كندانسور و ازآنجا كارآيي تمام نيروگاه در مقايسه با يك سايت ساحلي كاهش مي يابد. همچنين ساختمان برجهاي خنك كن قيمت كلي ساختمان و بناي نيروگاه را افزايش مي دهد.

    احتياج براي خنك كردن آب يك فاكتور مهم در انتخاب سايت نيروگاهي زغالي , نفتي و هسته اي است. يك سايت كه مناسب است براي يك نيروگاه كه از يك نوع سوخت استفاده مي كند بناچار مناسب نيست براي يك نيروگاه كه ار نوع ديگري سوخت استفاده مي كند.

    نيروگاه هاي ذغال- سوختي ( Coal-Fired Power Stations )

    پيش از اين نيروگاه هاي سوخت ذغال سنگ نزديك باري كه آنها نامين ميكردند ساخته مي شدند. يك نيروگاه خروجي 2GW , درحدود 5 ميليون تن ذغال در سال مصرف ميكند. در بريتانيا : كه بيشتر ذغال نيروگاه توسط ريل حمل ميشود : , اين نشان ميدهد , يك مقدار متوسط در حدود 13 ترن در روز را كه هركدام 1000تن را حمل ميكنند . اين يعني اينكه نيروگاه هاي ذغال- سوختي به يك ريل متصل نياز دارند مگر اينكه نيروگاه درست در دهانه معدن ( بسيار نزديك به معدن ) ساخته شود.

    نيروگاه هاي نفت- سوختي ( Oil-Fired Power Stations )

    سوخت نفتي نيروگاه ميتواند مشتق بشود به نفت خام كه نفتي است هنگاميكه از چاه بيرون مي آيد, و نفت باقيمانده كه باقي مي ماند هنگاميكه بخشهاي قابل دسترس استخراج بشوند در تصفيه نفت. قيمت انتقال نفت توسط خطوط لوله كمتر از انتقال ذغال سنگ با ريل است, اما حتي همان نيروگاههاي سوخت نفت خام هم اغلب در نزديكي اسكله ها و لنگرگاه هاي با آب عميق كه براي تانكرهاي اندازه متوسط (تانكرهاي حمل و نقل سوخت) مناسب است , واقع ميشوند. نفت باقيمانده نيرگاههاي سوختي احتياج دارد در نزديكي تصفيه خانه كه آنها را تامين مي كند واقه شوند. اين بدليل است كه نفت باقيمانده بسيار چسبناك است و ميتواند فقط منتقل بشود در ميان خطوط لوله بطور اقتصادي اگر آن گرم نگه داشته بشود.

    نيروگاه هاي هسته اي ( Nuclear Power Stations )

    در مقابله با ذغال سنگ و نفت , ارزش انتقال سوخت هسته اي ناچيزاست بدليل مقداراستعمال خيلي كم. يك نيروگاه 1GW درحدود 41/2 تن اورانيوم در هرهفته نياز دارد. اين مقايسه ميشود بطور بسيار مطلوب با 50000نت سوخت كه در يك هفته در نيروگاه ذغال- سوختي سوزانده ميشد. نيروگاه هاي هسته اي در حال حاضر تقريبا آب خنك بيشتري درمقايسه با نيروگاه هاي ذغال- سوختي و نفت- سوختي استفاده ميكنند , بعلت كارايي و بازده پايين آنها. همه نيروگاه هاي هسته اي در بريتانيا , با يك چشم داشت, در ساحل واقع مي شوند و از آب خنك دريا استفاده ميكنند.

    نيروگاه هاي برق- آبي ( Hydroelectric Power Stations )

    نيروگاه هاي برق- آبي بايد جايي واقع شوند كه دهانه آب دردسترس هست , و نظربه اينكه اين اغلب در مناطق كوهستاني است , آنها ممكن است به خطوط انتقال طولاني براي حمل توان به نزديك ترين مركز يا پيوستن به شبكه نياز داشته باشند. همه طرحهاي برق- آبي به دو فاكتور اساسي وابسته هستند : يكي جريان آب و يكي اختلاف در سطح يا دهانه. نياز دهانه ممكن است فراهم بشود بين يك درياچه و يك دره باريك, يا توسط ساختن يك سد كوچك در يك رودخانه كه جريان را منحرف ميكند به سمت نيروگاه, يا توسط ساختن يك سد مرتفع در مقابل يك دره براي ساخت يك درياچه مجازي.

    نيروگاههاي برق

    تاثير خواص توليد و انتقال


    چهار خاصيت منبع الكتريسيته وجود دارد كه يك تاثير عميق روي موضوعي كه منهدسي ميشود دارد. آنها بصورت زير هستند :

    1- الكتريسيته, نه مانند گاز و آب, نميتواند ذخيره بشود و تهيه كننده كنترل كوچكي بر بار در هر زماني دارد. مهندسان كنترل تلاش مي كنند براي نگهداري خروجي ژنراتورها متناسب با با ر متصل شده در ولتاژ و فركانس مخصوص.

    2- يك افزايش متناوب در تقاضا براي توان وجود دارد. اگرچه در بسياري از كشورهاي صنعتي سرعت افزايش در سالهلي اخير كاهش پيدا كرده است, حتي سرعت معتدل مستلزم كتسردگيها و افزايشات عظيم در سيستم هاي موجود است.

    3- توزيع و طبيعت سوخت دردسترس. اين جنبه هست جالبتر هنگاميكه ذغال سنگ اسخراج ميشود در مناطقي كه لروما مراكز بار اصلي نيستند : توان برق-آبي معمولا دور از مراكز بار بزرگ است. مشكل فواصل انتقال و سايت كردن(انتخاب كردن محل براي نيروگاه) نيروگاه يك تجربه مبهم و مورد بحث در اقتصاد است. استفاده عظيم انرژي هسته اي بسوي اصلاح الگوي تغذيه موجود متمايل خواهد شد.

    4- در سالهاي اخير ملاحظات منابع طبيعي و محيطي عمده اهميت و تاثير سايتينگ, هزينه ساختار,وعملكرد كارخانجات توليدي را بعهده گرفته است. همچنين طراحي تحت تاثير واقع ميشود بدليل تاخيرات در شروع پروژه ها بخاطر مراحل قانوني كه بايد طي شوند. از مهمترين خواص در زمان حاضر ضربه زيست محيطي كارخانجات هسته اي است, خصوصا راكتور افزاينده سريع پيشنهاد شده.

    تبديل انرژي با بكارگيري بخار

    احتراق ذغال يا نفت در بويلرها بخار را در بالاترين دما و فشار كه به توربينهاي بخاري ميرود توليد ميكند. نفت مزاياي اقتصادي دارد هنگاميكه آن ميتواند پمپ شود از تصفيه خانه به داخل خطوط لوله مستقيما بسمت بويلرهاي نيرگاه. استفاده ازنتيجه انرژي شكافت هسته اي بطور افزاينده در توليد برق دراد كسترش مي يابد: همچنين در اينجا اساس انرژي براي توليد بخار توربينها استفاده مي شود. نوع جريان- محوري توربين بطور مشترك با چندين سيلندر در يك شافت استفاده مي شود.

    نيروگاه بخاري براساس سيكل رانكين عمل ميكند , كه آن(: سيكل رانكين) با ********هيتينگ: superheating , گرمايش تغيه آب : Feed-water heating و دوباره گرمايش بخار: steam reheating اصلاح شده است. كارايي گرمايي افزايش يافته, استفاده از بخار در بالاترين دما و فشار ممكن را نتيجه ميدهد. همچنين براي توربينها ساختار اقتصادي , اندازه بزرگ و هزينه كلي كم ميباشد. بعنوان يك نتيجه در حال حاضر توربوژنراتور500MW و بيشتر دارد استفاده ميشود. با استفاده از توربينهاي با ظرفيت 100MW و بيشتر , كارآيي توسط دوباره گرمايش بخار بعدازاينكه آن اندكي توسط يك گرم كننده خارجي منبسط شود, افزايش مي يابد. سپس بخار دوباره گرم شده بداخل توربين كه در مرحله نهايي بارگذاري منبسط مي شود , برگشت داده ميشود.

    شكل1-2

    - شكل ها در متن انگليسي مقاله مجود مي باشد

    يك دياگرام از يك نيروگاه ذغال- سوختي در شكل 1-2 نشان داده شده است. در شكل 2-2 , جريان انرژي در يك نيروگاه بخاري مدرن نشان داده شده است. باوجود مزاياي دائم در طراحي بويلرها و در توسعه مواد بهبود يافته, طبيعت چرخه بخار آنچنان است كه كارآييها نسبتا كم هستند و مقادير وسيع گرما در مرحله ميعان ( در كندانسور ) بهدر مي رود. به هرحال مزيتهاي بزرگ در طراحي و مواد در سالهاي اخير كارآيي هاي دمايي و حرارتي نيروگاههاي ذغالي را در حدود 40 درصد افزايش داده است.

    شكل2-2

    در نيروگاه هاي ذغال- سوختي , ذغال سنگ به يك كارخانه جداسازي ذغال از سنگ حمل ميشود وخورد مي شود به و به ظرافت ساييده ميشود. سوخت ساييده و پودر شده به داخل بويلر دميده مي شود بطوريكه با هوا براي احتراق مخلوط مي شود. خروجي از توربين فشار ضعيف سرد ميشود براي شكل گرفت عمل معيان توسط عبور از ميان ميعان كننده(كندانسور) وسط مقادير زياد آب دريا يا رودخانه, درجاييكه امكان سرد كردن توسط برجهاي خنك كن وجود ندارد.

    بويلرها در بستر جرياني

    براي ذغالهاي نوعي , گازهاي احتراق شامل 2/0 - 3/0 درصد اكسيدسولفور بر حجم مي باشند. اگر سرعت جريان گاز در ميان بستر دانه اي يك بويلر نوع بزرگ افزايش مي يابد كشش گرانش متعادل مي شود توسط نيرري بسمت بالاي گاز و بستر سوخت روي خاصيت يك سيال مي رود. در يك پيمايش سايش اين گرماي خروجي و دما را افزايش ميدهد. خاكستر شكل گرفته جوش مي خورد و بصورت كلوخ در مي آيد و ته نشين مي شود بداخل صافي و به داخل چاه خاكستر برده مي شود. بستر به دماي خاكستر سوزي(زينتر كردن خاكستر) در حدود 1050 - 1200 درجه سانتيگراد محدود مي شود. احتراق ثانويه در بالاي بستر جاييكه كه گازCO به گازCO2 ميسوزد و H2S به SO2 تبديل مي شود , اتفاق مي افتد. اين نوع از بويلر دستخوش بهبود وسيعي مي شود و بدليل تراز آلودگي كم و كارآيي بهتر جذاب است.

    تبديل انرژي با استفاده از آب

    شايد قديمي ترين شكل تبديل انرژي استفاده از نيروي آب است. دريك نيروگاه برق-آبي انرژي با هزينه رايگان فراهم مي شود. اين چهره جذاب همواره تاحدي توسط هزينه كلي بسيار بالاي ساختار خنثي شده است, خصوصا از منظر كارهاي مهندسي عمران. بهرحال امروزه هزينه كلي به ازاي كيلووات نيروگاههاي برق-آبي با نوع بخاري نيروگاهها در مقايسه است. متاسفانه, شرايط جغرافيايي لازم براي توليد آبي بطور عادي يافت نمي شوند. در بيشتر كشورهاي توسعه يافته منابع برق-آبي در دوردست استفاده مي شوند.

    يك راه حل براي استفاده مرسوم از انرژي آب , ذخيره پمپي است, كه آب را قادر مي سازد تا دروضعيتي كه متمايل به طرحهاي مرسوم نخواهد بود , استفاده بشود. بهره برداري از انرژي درجريانهاي جذرومد در كانالها مدتها موضوع بحث و تفكر بوده است. مشكلات فني و اقتصادي خيلي عظيم هستند و تعداد كمي محل وجود دارد كه طرح در آنها عملي باشد. يك تاسيسات كه از جريان جذرومد استفاده ميكند در دهانه رود لارنس در شمال فرانسه كه رنج ارتفاع جذرومد 2/9 متر است و جريان جذرومد 18000مترمكعب بر ثانيه تخمين زده مي شود, قرار دارد.

    قبل از بحث در مورد انواع توربينها , يك توضيح خلاصه بر روشهاي كلي عملكرد نيروگاههاي برق-آبي داده خواهد شد. اختلاف عمودي بين مخزن بالايي و تراز توربينها باعنوان هد(head يا دهانه) شناخته ميشود. آب ريزان از ميان اين دهانه انرژي جنبشي كه پس از آن به تيغه هاي توربين مي رسد را ايجاد و تقويت مي كند.

    در زير 3 نوع اصلي از تاسيسات آورده شده است :

    1- دهانه بلند يا ذخيره بلند - منطقه ذخيره سازي يا منبع بصورت نرمال در بالاي 400 h ميريزد.

    2- دهانه متوسط يا حوضچه اي - ذخيره در 200-400 h ميريزد.

    3- حركت رودخانه اي( Run of River ) - مخزن در كمتر از 2 h ميريزد ارتفاع دهانه آن بين 3 تا 15 متر است. يك دياگرم براي نوع سوم در شكل 3-2 نشان داده شده است.

    در ارتباط و هماهنگي با اين ارتفاعات و دهانه مختلف كه در بالا آورده شد , توربينها از انواع خاصي از توربين هستند. آنها بصورت زير هستند:

    1- پيلتون. اين براي دهانه هاي بين 1840 - 184 متر استفاده مي شود و شامل يك سطل چرخ رتور با نازل جريان تعديل پذيراست.

    2- فرانسيس. كه براي دهانه هاي بين 490- 37 متر استفاده مي شود و از انواع جريان مخلوط است.

    3- كاپلن. كه براي نيروگاههاي جريان-رودخانه اي و حوضچه اي با دهانه هاي بالاي 61 متر استفاده مي شود. اين نوع اين نوع يك روتور محور- جرياني با گام تيغه هاي متغير ( تيغه هاي گام - متغير ) است.

    شكل3-2

    منحني هاي بازده براي هر توربين در شكل 4-2 نشان داده شده است. هنگاميكه كارآيي به دهانه آب كه دائما در نوسان است بستگي دارد, اغلب آب مصرفي در مترهاي مكعب به ازاي كيلووات ساعت استفاده مي شود و به دهانه آب ارتباط دارد. كارخانه برق-آبي توانايي شروع سريع را دارد و در زمان تعطيلي متضرر نمي شود. بناراين آن مزيتهاي بزرگي دراد براي توليد در برخورد با پيك بارها در كمترين هزينه, در عطف با نيروگاه حرارتي يا گرمايي. با استفاده از كنترل ازراه دور جايگاههاي آبي, زمان مورد نيلز از زمان راهنمايي و هدايت براي راه اندازي تا رسيدن به يك اتصال واقعي به شبكه قدرت ميتواند تا كمتر از 2 دقيقه كوتاه شود.

    شكل4-2

    توربينهاي گازي

    استفاده از توربين گازي بعنوان يك محرك اصلي مزيتهاي خاصي را بر كارخانه بخار دارد , اگرچه با گردش نرمال آن از نظر اقتصادي درعملكرد كمتر اقتصادي است. مزيت اصلي در توانايي براي راه اندازي و بارگذاري سريع نهفته است. از اين رو توربين گازي براي استفاده بعنوان يك روش براي رسيدگي كردن به پيكهاي بار سيستم بكارمي آيد. يك استفاده بيشتر براي اين نوع از ماشين , استفاده بعنوان متعادل كننده يا جبران كننده سنكرونيزم براي كمك به ترازهاي ولتاژي ناخواسته و اتفاقي است. حتي در زمينه هاي اقتصادي بطور محتمل آن مفيد است در برخورد با پيك بارها توسط راه اندازي توربينهاي گازي از حالت سرد براي 2 دقيقه نسبت به گردش كارخانه يدكي ( اضافي ) بطور پيوسته.

  6. #96
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    اتيلن كليگول، مهمترين سيال در مايعات خنك كننده

    در گذشته از آب به دليل قيمت ارزان و خاصيت انتقال حرارتي آن به عنوان مايع
    خنك كننده در بخش هاي داخلي موتور استفاده مي شد. اما با گذشت زمان و پيشرفت تكنولوژي مشخص شد كاربرد آب به تنهايي به عنوان خنك كننده داراي معايب مختلف است كه مي توان به موارد زير اشاره كرد:

    - پايين بودن نقطه جوش آب يكي از ويژگي هاي منفي آن است. با پيشرفت صنايع خودرو سازي و توليد حرارت بيشتر در موتورهاي جديد، آب در سيستم خنك كننده بخار شده و موجب اختلال در اين سيستم مي شود.

    - بالا بودن نقطه انجماد آب و افزايش حجم حدود9 درصدي آن (برخلاف ساير تركيبات شيميايي كه در اثر انجماد كاهش حجم مي يابند) موجب تخريب رادياتور و حتي بخشي از موتور خواهد شد.

    - خوردگي و زنگ زدگي فلزات مصرفي در سيستم خنك كننده توسط آب بسيار شديد است.
    تا سال1920 ميلادي متانول بدست آمده از تقطير چوب، بيشترين كاربرد را در ساخت ضد يخ داشت. الكل اتيليك، گليسيرين، كلرور كلسيم و همچنين آب نمك مايعاتي بودند كه به عنوان خنك كننده به كار مي رفتند. آب شكر و مخلوط آب عسل نيز به مقدار محدود به عنوان مايع خنك كننده كاربرد داشتند. همچنين نفت و روغن هاي نفتي كه با آب مخلوط نمي شوند نيز به عنوان مايع خنك كننده كاربردهاي محدودي داشتند.

    در طول سال هاي1920 تا1930 ميلادي و با توسعه صنعت خودروسازي، مصرف مايعات خنك كننده موتور نيز افزايش چشمگيري پيدا كرد. در اين سالها الكل اتيليك به دليل قيمت ارزان و توليد مناسب به عنوان بهترين مايع خنك كننده موتور به كار گرفته شد و به تدريج استفاده از تركيبات ياد شده هر يك به دلايلي منسوخ شد. در اين ميان كاربرد ضد يخ پايه الكلي، به دليل پايين بودن نقطه جوش مخلوط آب و الكل، تبخير سريع الكل و احتمال آتش گرفتن آن و همچنين سمّي بودنِ متانول كه موجب صدمه به سرنشينان مي شد، نامناسب تشخيص داده شد. مصرف گليسيرين نيز تابع بازار توليد و مصرف بود. مصرف كلسيم كلريد و آب نمك نيز كه در بعضي نواحي به عنوان مايع ضديخ به كار مي رفت، به دليل خاصيت شديد خورندگي، به ميزان قابل توجهي محدود شد. همچنين استفاده از محلول شكر و يا عسل در آب به دليل نياز به محلول هاي غليظي از اين مواد براي نزول نقطه انجماد منسوخ شد.

    در اين سالها روغن هاي نفتي كه به علت نقطه انجماد پايين و عدم خوردگي مورد توجه قرار گرفته بودند، به دلايلي از جمله نياز به حجم بيشتري از سيال (به علت عدم اختلاط با آب)، گران بودن، اثر نامطلوب بر لوله هاي لاستيكي و خطر آتشگيري، ديگر مورد استفاده قرار نگرفت. همچنين بكارگيري مايعاتي از قبيل روغن هاي معدني و نفتي به دليل پايين بودن قابليت انتقال حرارتي و افزايش گرانروي آنها در فصل زمستان (كه موجب كاهش تبادل حرارتي مي شود) متوقف شد. علاوه بر دلايل ياد شده هنگام استفاده از اين تركيبات، اگر درجه نشان دهنده دما در خودرو خراب مي شد، بالا رفتن حرارت مايع خنك كننده معلوم نمي شد و بدين ترتيب اين تركيبات در حرارت هاي بالا موجب ذوب لحيم هاي موجود در رادياتور و سوختن موتور مي شد.

    در برخي موارد از متوكسي و پروپانول كه يك گليكول اتر است به عنوان ضديخ استفاده مي شد، كه مزيت آن سازگاري با روغن موتور و مخلوط شدن با آن (در صورت ايجاد نشت) بود. ولي به دليل پايين بودن نقطه اشتعال، نقطه جوش و قيمت بالا كاربرد آن منسوخ شد.

    در سال1925 ميلادي براي اولين بار مصرف اتيلن گليكول به عنوان خنك كننده موتور رواج پيدا كرد. در ابتدا مصرف اين ماده كم بود ولي به تدريج با آگاهي بيشتر نسبت به مزاياي محصول توليدي، مصرف آن افزايش يافت و در حال حاضر بيشترين مصرف اتيلن گليكول به منظور توليد سيال خنك كننده موتور است.
    با افزايش مصرف اتيلن گليكول و كاربردهاي مناسب آن براي سيال خنك كننده موتور، به تدريج مصرف متانول، الكل اتيليك و ساير مواد شيميايي براي توليد ضد يخ كاهش يافت مصرف اين مواد در فرمولاسيون مايعات خنك كننده موتور در سال1950 به كلي منسوخ شد به گونه اي كه توليد و مصرف اتيلن گليكول از49 ميليون ليتر به71 ميليون ليتر در سال رسيد.

    محلول44 تا70 درصد اتيلن گليكول در آب، سيستم رادياتور را در بالاترين ظرفيت طراحي شده نگه مي دارد و به اين ترتيب با استفاده از اين محلول مطمئن مي شويم كه موتور به دليل جوش آوردن صدمه نخواهد ديد. علاوه بر اين، اختلاط نسبت معيني از اتيلن گليكول با آب، عمل خنك كردن را در دامنه وسيعي از دما انجام مي دهد و نقطه انجماد آب را به ميزان كافي پايين مي برد.

    يكي ديگر از مزاياي به كارگيري اتيلن و پروپيلن گليكول به عنوان سيال پايه در فرمولاسيون ضد يخ، پايين بودن ميزان آثار مخرب زيست محيطي اين تركيبات است. اتيلن و پروپيلن گليكول مي توانند پس از مصرف وارد محيط آبي شوند. هر دو محلول قابليت حلاليت بالا داشته و ميزان آثار زيان بار اين دو ماده براي ماهي ها، حيات وحش، حيات گياهي و ميكروارگانسيم ها پايين است. تجزيه بيوشيميايي اين دو ماده سريع و كامل انجام مي شود.

  7. #97
    مدیر بازنشسته
    تاریخ عضویت
    2009/07/27
    نوشته ها
    8,031

    پیش فرض

    پايان

صفحه 10 از 10 نخستنخست 12345678910

کلمات کلیدی این موضوع

مجوز های ارسال و ویرایش

  • شما نمیتوانید موضوع جدیدی ارسال کنید
  • شما امکان ارسال پاسخ را ندارید
  • شما نمیتوانید فایل پیوست کنید.
  • شما نمیتوانید پست های خود را ویرایش کنید
  •